УДК 616.12-008.331.1-092:577.171.54 https://doi.org: 10.20538/1682-0363-2019-2-234-247

Мембранная теория патогенеза артериальной гипертензии: что мы знаем об этом полвека спустя?

Орлов С.Н.^{1, 2, 3}

- 1 Московский государственный университет (МГУ) им. М.В. Ломоносова Россия, 119991, г. Москва, ул. Ленинские Горы, 1
- ² Национальный исследовательский Томский государственный университет (НИ ТПУ) Россия, 634050, г. Томск, пр. Ленина, 36
- ³ Сибирский государственный медицинский университет (СибГМУ) Россия, 634050, г. Томск, Московский тракт, 2

РЕЗЮМЕ

В обзоре кратко изложена история открытия в середине 1970-х гг. нарушений ионного транспорта через плазматические мембраны клеток при первичной артериальной гипертензии. Анализируется полувековая история исследований молекулярной природы ионных транспортеров, лежащих в основе этих нарушений, и опосредованных ими механизмов, приводящих к развитию гипертонической болезни и осложнений, обусловленных долгосрочным повышением артериального давления.

Ключевые слова: ионные транспортеры, плазматические мембраны клеток.

Конфликт интересов. Автор декларирует отсутствие явных и потенциальных конфликтов интересов, связанных с публикацией настоящей статьи.

Источник финансирования. Работа была поддержана грантами Канадского института исследований в области здравоохранения (МОР-81392), Обществ по изучению сердца и почек Канады, Федеральной целевой программой 2009—2013 гг. «Научно-исследовательские кадры инновационной России», Российским фондом фундаментальных исследований (09-0073/04; 15-04-08832; 18-04-00063) и Российским научным фондом (14-15-00006 и 16-15-10026).

Для цитирования: Орлов С.Н. Мембранная теория патогенеза артериальной гипертензии: что мы знаем об этом полвека спустя?. *Бюллетень сибирской медицины*. 2019; 18 (2): 234–247. https://doi. org: 10.20538/1682-0363-2019-2-234-247.

УДК 616.12-008.331.1-092:577.171.54 https://doi.org: 10.20538/1682-0363-2019-2-234-247

Membrane theory of the pathogenesis of arterial hypertension: What do we know about this, half a century later?

Orlov S.N. 1, 2, 3

¹ Lomonosov Moscow State University 1, Leninskie Gory Str., Moscow, 119991, Russian Federation

[⊠] Орлов Сергей Николаевич, sergeiorlov@yandex.ru.

- ² National Research Tomsk State University
- 36, Lenina Av., Tomsk, 634050, Russian Federation
- ³ Siberian State Medical University
- 2, Moscow Trakt, Tomsk, 634050, Russian Federation

ABSTRACT

The review summarizes the history of the discovery in the mid-70s of the impaired ion transport across the plasma membrane of cells during primary arterial hypertension. A half-century's history of studies on the molecular nature of the ionic transporters underlying these disorders and the mechanisms mediated by them leading to the development of hypertension and complications caused by a long-term increase in blood pressure is analyzed.

Key words: ion transporters, plasma membrane of cells.

Conflict of interest. The author declares the absence of obvious and potential conflicts of interest related to the publication of this article.

Source of financing. This work was supported by grants from the Canadian Institute of Health Research (MOP-81392), Canadian scientific societies of the heart and kidneys, and the 2009–2013 Federal Targeted Program "Scientific and Scientific-Pedagogical Human Resources of Innovation-Driven Russia", the Russian Foundation for Basic Research (09-0073 / 04; 15-04-08832; 18-04-00063) and the Russian Science Foundation (14-15-00006 and 16-15-10026).

For citation: Orlov S.N. Membrane theory of the pathogenesis of arterial hypertension: What do we know about this, half a century later? *Bulletin of Siberian Medicine*. 2019; 18 (2): 234–247. https://doi.org: 10.20538/1682-0363-2019-2-234–247.

Посвящается светлой памяти моего учителя, профессора Ювеналия Васильевича Постнова

ВВЕДЕНИЕ

В 1974 г. я заканчивал аспирантуру при кафедре биофизики биологического факультета МГУ имени М.В. Ломоносова. Моя кандидатская диссертация была посвящена изучению механизма свободнорадикального окисления природных липидов в модельных экспериментах. Теоретические основы этой работы были заложены Борисом Николаевичем Тарусовым и Николаем Марковичем Эммануэлем как частный случай цепных реакции горения, описанных за 50 лет до этого Николаем Николаевичем Семеновым, за что ему в 1956 г. была присуждена Нобелевская премия. Годы моей аспирантуры пришлись на время ключевых открытий в области молекулярной биологии. Проводимые мной исследования, несмотря на открытие явления флуоресценции окисленных липидов биологических мембран и ряд других интересных результатов, представлялись мне малопер-

спективными, и я решил резко сменить тематику дальнейшей работы [1]. В связи с этим я пришел в научно-исследовательскую лабораторию, организованную двумя годами ранее при Четвертом главном управлении (в нынешней терминологии при Президенте РФ) Министерства здравоохранения СССР Евгением Ивановичем Чазовым, и был зачислен на должность младшего научного сотрудника в отдел, возглавляемый профессором Ювеналием Васильевичем Постновым (рис. 1). Мне было предложено приступить к изучению особенностей структурно-функционального состояния плазматических мембран клеток гладкой мускулатуры (ГМК) крыс со спонтанной генетической гипертензией (spontaneously hypertenive rats, SHR), привезенных Ю.В. Постновым из Института клинических исследований (Монреаль, Канада) и до сих пор рассматриваемых как наиболее адекватная экспериментальная модель гипертонической болезни человека, которая в англоязычной литературе классифицируется как первичная, или эссенциальная, гипертензия. Предпосылкой для данного проекта послужили данные об увеличении скорости обмена изотопов одновалентных ионов в изолированных полосках сосудов крыс SHR, полученные американским исследователем

А. Jones [2]. Следует, однако, отметить, что эти эксперименты были проведены на 12–16-недельных животных, а потому зафиксированные в них нарушения могли быть не причиной, но следствием долгосрочного воздействия на сосуды повышенного давления, приводящего к морфологическим изменениям, обнаруженным за долго до этого шведским физиологом В. Folkow [3]. Учи-

тывая это обстоятельство, мы решили использовать SHR в возрасте от 4 до 6 нед, т.е. на стадии, предшествующей развитию хронической гипертензии. Я также обратил внимание на сложную морфологию сосудистой стенки, которая наряду с ГМК включает эндотелий и клетки соединительной ткани, что существенно затрудняет изучение процессов трансмембранного переноса ионов.

Рис. 1. Ю.В. Постнов — аспирант Рязанского медицинского института, 1953-1956 (a); — заведующий отделом патологии Кардиологического научного центра, г. Москва, 2005 (b)

Fig. 1. Yu.V. Postnov – graduate student at the Ryazan Medical Institute, 1953–1956 (a); Head of the Pathology Department of the Cardiology Research Center, Moscow, 2005 (b)

В этой связи мы решили провести первые эксперименты на эритроцитах, лишенных не только ядра, но и других внутриклеточных мембранных органелл. Мы полагали, что в этих экспериментах отработаем адекватные методы, впоследствии перенести на которые можем изучение проницаемости ГМК. Однако, к нашему удивлению, уже в первых экспериментах было обнаружено, что в эритроцитах SHR существенно выше скорости обменов $^{22}Na^{+}/^{23}Na^{+}$ и $^{42}K^{+}/^{40}K^{+}$, что свидетельствовало об увеличении проницаемости плазматической мембраны гипертензивных животных для одновалентных катионов [4, 5]. Независимо от нас к аналогичному выводу пришли другие исследователи [6-8]. Позднее увеличение проницаемости эритроцитов для натрия и калия было зарегистрировано у части больных гипертонической болезнью [9]. Основываясь на результатах этих работ и данных, полученных на полосках сосудов SHR [2], нами была сформулирована мембранная концепция гипертонической болезни, изложенная

в ряде обзоров и монографии [10–15]. Хочется отметить особую роль в реализации этого проекта кандидата биологических наук Павла Васильевича Гулака, который не только научил нас работать с изотопами в отнюдь не идеальных условиях¹, но и разработал оригинальную методологию расчета скорости трансмембранного изотопного обмена [16].

Ниже мы суммируем результаты последующих исследований, посвященных идентификации молекулярных транспортеров, вовлеченных в увеличение проницаемости плазматической мембраны для одновалентных катионов. Мы сосредоточим внимание на ион-транспортирующих системах, идентифицированных в эритроцитах (рис. 2). Данные о других ионных каналах и переносчиках, отсутствующих в эритроцитах, но вовлеченных в патогенез гипертензии через их функционирование в клетках эпителия почечных канальцев, нейронах и астроцитах головного мозга, заинтересованный читатель может найти в обзорах [17–19].

 $^{^1}$ В этой связи вспоминается случай: в поисках оптимального места для утилизации разбавленных отходов 22 Nа я обратил внимание на слив для отработанных химикатов под лабораторной тягой. Через несколько минут после начала процедуры я заметил, что стою в луже, заполненной ртутью. Оказалось, что в последний раз тягой пользовались более 5 лет назад, когда в нее сливали отходы с отработанной ртутью.

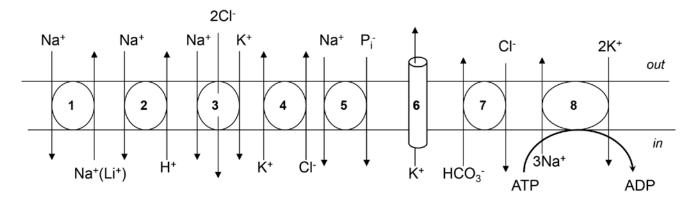


Рис. 2. Основные системы, принимающие участие в транспорте одновалентных ионов через мембрану эритроцитов: $1-\mathrm{Na^+/Na^+}$ ($\mathrm{Na^+/Li^+}$) обмен; $2-\mathrm{Na^+/H^+}$ обмен; $3-\mathrm{Na^+,K^+,2Cl^-}$ котранспорт; $4-\mathrm{K^+,Cl^-}$ котранспорт; $5-\mathrm{Kotpahcnopt}$ Na $^+$ и анионов фосфата; $6-\mathrm{Ca^{2+}}$ -активируемые $\mathrm{K^+}$ каналы; $7-\mathrm{ahuohhhiй}$ обменник; $8-\mathrm{Na^+,K^+}$ - $\mathrm{AT\Phi}$ аза

Fig. 2. The main systems involved in the transport of monovalent ions through the erythrocyte membrane: $1 - Na^+ / Na^+ (Na^+ / Li^+)$ exchange; $2 - Na^+ / H^+$ exchange; $3 - Na^+, K^+, 2C\Gamma$ cotransport; $4 - K^+, C\Gamma$ cotransport; 5 - CCT cotransport of Na^+ and phosphate anions; $6 - Ca^{2+}$ -activated K^+ channels; 7 - CCT anion exchange; $8 - Na^+, K^+$ -ATPase

ИДЕНТИФИКАЦИЯ СИСТЕМ, ВОВЛЕЧЕННЫХ В УВЕЛИЧЕНИЕ ПРОНИЦАЕМОСТИ ПЛАЗМАТИЧЕСКОЙ МЕМБРАНЫ

 $Na^{\scriptscriptstyle +}$, $K^{\scriptscriptstyle +}$ - $AT\Phi$ аза

Na+,K+-ATФаза в ответ на гидролиз одной молекулы АТФ осуществляет транспорт трех ионов ${
m Na}^+$ и двух ионов ${
m K}^+$ против градиента их концентраций (см. рис. 2), который полностью ингибируется в присутствии уабаина и других кардиотонических стероидов. В эритроцитах этот фермент представлен единственной изоформой (а1), которая у крыс и мышей обладает крайне низким сродством к уабаину (Кол ~50-100 µМ и 0,2-0,5 µМ в эритроцитах крысы и человека соответственно). В рассмотренных выше экспериментах мы обнаружили увеличенную скорость ²²Na/²³Na обмена в эритроцитах крыс SHR в присутствии 50 µМ уабаина, на основании чего нами был сделан вывод о том, что увеличение проницаемости мембраны для одновалентных ионов не связано с активностью Na+, K+-насоса [5]. В дополнительных экспериментах активность Na+,K+-ATФаза оценивалась по скорости гидролиза аденозинтрифосфата (АТФ). Эти эксперименты, равно как и оценка числа мест связывания [3H]-уабаина, не выявили отличий в эритроцитах SHR [12]. Небольшое (15-20%) увеличение активности Na+,K+-насоса в эритроцитах SHR по отношению к нормотензивным крысам линии Vistar-Kyoto, обнаруженное при добавлении насыщающих концентраций уабаина, можно, по-видимому, рассматривать как следствие увеличения в эритроцитах концентрации внутриклеточного Na⁺, отмеченное целым рядом исследователей [5, 20–23].

Нормотензивные крысы линии Brown-Norway (BN.lx) были выбраны в Институте физиологии Чешской академии наук для получения гибридов второго поколения (SHRxBN.lx F, hybrids) [24]. Используя эритроциты, пермеабилизированные сапонином, было показано, что у BN.lx крыс активность Na+, K+-АТФазы снижена по отношению к SHR на 20-30% [25]. В лаборатории професcopa G. Bianchi были получены гипертензивные крысы линии MHS (Milan hypertensive strain), у которых изменения функции почек были близки к таковым, обнаруженным у больных гипертонической болезнью [26]. В эритроцитах крыс MHS уабаин-чувствительная компонента скорости входа 86 Rb была на 15-25% ниже, чем у крыс номотензивного контроля (Milan normotensive strain, MNS) [27]. В нашей лаборатории эти наблюдения были подтверждены при исследовании уабаин-чувствительной компоненты скорости выхода ²²Na efflux [22].

Для выяснения молекулярных механизмов формирования феномена соль-чувствительной гипертензии, были использованы инбредные линии, полученные при скрещивания соль-чувствительных (Dahl salt-sensitive, SS) и соль-резистентных (Dahl salt-resistant, SR) крыс [28]. При исследовании влияния уабаина на скорость входа K^+ и выхода Na^+ , отличий между эритроцитами SS и

SR обнаружено не было, несмотря на достоверное увеличение концентрации внутриклеточного Na_{i}^{+} в эритроцитах SS [29, 30]. В нашем исследовании также не удалось обнаружить различий стехиометрии функционирования Na_{i}^{+} , K_{i}^{+} -насоса (выход трех ионов Na_{i}^{+} сопровождается захватом двух ионов K_{i}^{+}) как между крысами SS и JR, так и конгенной линии крыс, у которых локус, содержащий ген al Na_{i}^{+} , K_{i}^{+} -АТФазы, был заменен на локус нормотензивных крыс MNS [31]. В этой связи интересно отметить, что в отличие от SR животных, активность Na_{i}^{+} , K_{i}^{+} -насоса увеличивалась в эритроцитах SS крыс при их переходе на высокосолевую диету [32].

Несколько лабораторий представили данные о том, что как и в эксперименте, так и в клинике, развитие гипертензии сопровождается увеличением содержания в плазме крови цереброваскулярной жидкости и некоторых исследовавшихся на этот предмет тканях эндогенных кардиотонических стероидов, что ведет к снижению активности Na⁺,K⁺-ATФазы. Результаты этих исследований суммированы в ряде обзоров [33–36].

Na^+/Li^+ обмен

В 1980 г. группой ученых Гарвардского университета было обнаружено, что у больных гипертонической болезнью увеличена скорость $\mathrm{Na^+/Na^+}$ обмена, регистрируемая по $\mathrm{Na^+_{\ o}}$ -зависимой компоненты скорости выхода $\mathrm{Li^+}$ из эритроцитов, предварительно нагруженных этим катионом [37]. В англоязычной литературе этот вид транспорта получил название $\mathrm{Na^+/Li^+}$ exchange или $\mathrm{Na^+/Li^+}$ counter transport. Впоследствии увеличение скорости $\mathrm{Na^+/Li^+}$ -обмена у части больных первичной гипертензией было подтверждено в более чем 300 публикациях других исследовательских групп [13, 14].

Сравнительно недавно мы предприняли попытку выяснения молекулярной природы Na+/ Li⁺ обмена. Так как неорганический фосфат (Pi) ингибирует Na⁺-зависимый выход Li⁺ [38], можно предположить, что Na⁺/Li⁺ обмен опосредован изоформой Na+,Р, котранспорта. В этой связи мы сопоставили активности данных ионных переносчиков в эритроцитах человека, крысы и кролика. Na⁺/Li⁺ обмен был ниже уровня достоверной детекции у крысы, но примерно в 50 раз выше у кролика по сравнению с человеком. В отличие от Na⁺/Li⁺ обмена, активность Na⁺, Рi котранспорта у крысы, человека и кролика соотносилась как 1:2:6 и не зависела от нагрузки эритроцитов Li+ [39]. В дополнительных экспериментах мы не обнаружили существенных различий эритроцитов трех исследовавшихся видов при сравнении скоростей анионного обмена, $Na^+,K^+-AT\Phi$ азы и $Na^+,K^+,2Cl^-$ котранспорта [40]. Полученные результаты свидетельствуют о том, что увеличение Na^+/Li^+ обмена в эритроцитах больных гипертонической болезнью не связано с активностью клонированных ион-транспортирующих систем, приведенных на рис. 2. Таким образом, вопрос о молекулярной природе этого переносчика остается открытым.

Na^+/H^+ обмен

В нашей лаборатории было показано, что подобно клеткам, содержащим ядро, скорость ²Na входа увеличивается при закислении цитоплазмы, а также при изо- или гиперосмотическом сжатии эритроцитов крысы, что указывало наличие Na^+/H^+ обмена [41, 42]. Позднее было показано, что это явление опосредовано универсальной изоформой данного переносчика NHE1 (SLC9A1) [43]. Для регистрации активности Na⁺/H⁺ обмена в ответ на закисление цитоплазмы ($D\mu_{\text{H+}}\text{-induced}$ Na+/H+ exchange) были использованы два методических подхода. Мы использовали амилорид, ингибирующий все клонированные изоформы Na^{+}/H^{+} обмена [44], и обнаружили, что амилорид-ингибируемая компонента выхода Н+ увеличена на 40-50% в эритроцитах SHR, но не изменена в эритроцитах МНS [45]. М. Canessa с соавт. измеряли активность этого переносчика как разницу начальных скоростей входа Na⁺ при $pH_{2} = 8,0$ и 6,0. Они не обнаружили отличий в эритроцитах SHR и MHS, но выявили увеличение активности Na⁺/H⁺ обмена у крыс SS при их переводе на высокосолевую диету [46]. Следует отметить, что описанные выше подходы измерения имеют ряд ограничений. Во-первых, оценка скорости выхода Н+ затруднена, так как для регистрации этого процесса используются среды, буферная емкость которых на 2-3 порядка ниже буферной емкости цитоплазмы эритроцитов. Это обстоятельство становится особо важным при использовании амилорида, существенно увеличивающего буферную емкость среды инкубации эритроцитов [47]. Во-вторых, эритроциты млекопитающих обогащены анионным обменником (белок полосы 3), который способствует быстрой диссипации трансмембранного градиента протонов $(D\mu_{H+})$. Это обстоятельство существенным образом затрудняет измерение потоков Na⁺ и H⁺, опосредованных Na⁺/H⁺ обменом. В-третьих, при концентрации 1 mM амилорид обладает целым спектров побочных эффектов, включая частичный гемолиз эритроцитов [46].

Учитывая эти ограничения, мы определили прирост скорости Na⁺/H⁺ обмена в ответ на сжатие эритроцитов в гиперосмотической среде. Эти опыты не выявили отличий у крыс SHR по отношению к нормотензивным крысам WKY [48]. Для исследования скорости Na^+/H^+ обмена в культуре гладкомышечных клеток мы использовали этилизопропиламилорид (EIPA), ингибирующий NHE1 в концентрациях на два порядка меньших по сравнению с амилоридом. Мы обнаружили 50-60%-е увеличение скорости Na⁺/H⁺ обмена как у SHR, так и у крыс, где повышенное давление сопровождается мозговыми кровоизлияниями (stroke-prone spontaneously hypertensive rats, SHRSP) [49]. В этом исследовании мы также проанализировали структуры кодирующий участка гена SLC9A1 и не обнаружили каких-либо мутаций у обеих линий гипертензивных животных. Таким образом, активация NHE1 в гладкомышечных клетках сосудов гипертензивных крыс опосредована, по-видимому, орган-специфическими системами, вовлеченными в регуляцию активности этого переносчика.

$Na^+, K^+, 2C^-$ -котранспорт

Котранспортеры катионов и хлора (cationchloride cotransporters, ССС) относятся к группе ионных переносчиков (solute carriers, SLC), осуществляющих перенос ионов через биологические мембраны как по их электрохимическому градиенту, так и против него. В последнем случае энергией служат градиенты котранспортируемых соединений, созданные за счет работы Na+,K+-ATФазы и других ионных насосов. Эта группа ионных транспортеров включает более 300 генов, организованных в 52 семейства [50]. ССС относятся к SLC12 семейству, представители которого осуществляют симпорт анионов Cl- совместно с катионами Na+ и (или) K+. SLC12 включает Na⁺,Cl котранспорт (NCC), кодируемый единичным геном (SLC12A3), $Na^+,K^+,2Cl^$ котранспорт (NKCC), кодируемый двумя генами: SLC12A2 (NKCC1) и SLC12A1 (NKCC2), и K^+ ,- $C\bar{\Gamma}$ котранспорт (КСС), кодируемый SLC12A4(КСС1), SLC12A5 (КСС2), SLC12A6 (КСС3) и SLC12A7 (КСС). NКСС ингибируется буметанидом, фуросемидом и родственными им соединениями, получившими название петлевых диуретиков по месту их основного действия в почках – восходящий отдел петли Генле. NCC полностью блокируется производными тиазида. В отличие от NKCC и NCC, специфических ингибиторов КСС до сих пор не обнаружено

и активность этого переносчика лишь частично уменьшается в присутствии высоких концентраций фуросемида. ССС генерируют как входящие, так и выходящие потоки ионов, и направленность их нетто-потоков зависит как от стехиометрии переноса, так и от трансмембранного градиента котранспортируемых ионов, создаваемых Na+,K+-АТФазой. При стехиометрии переноса 1:1 величина ионных потоков находится в линейной зависимости от концентрации котранспортируемых ионов. Так как $[K^+] >> [K^+]$, а $[C\bar{\Gamma}] > [C\bar{\Gamma}]$, нетто-поток, генерируемый КСС, направлен из клетки (см. рис. 2). Более сложная зависимость установлена для NKCC, работающего со стехиометрией 1Na⁺:1K⁺:- $2C\Gamma$, $[C\Gamma]^2 >>> [C\Gamma]^2$ и потому в большинстве типов клеток нетто-поток, опосредованный этим переносчиком, направлен в цитоплазму. Сведения о структуре генов, мембранной архитектуре и фармакологии ССС в полной мере рассмотрены в ряде обзоров [17, 51, 52].

В нашей лаборатории и рядом других исследовательских групп было установлено, что активность NKCC увеличена в эритроцитах крыс SHR и MHS [12, 13, 53–55]. На вовлечение этого переносчика в патогенез первичной гипертензии указывали также следующие данные:

- 1. В эритроцитах гибридов первого поколения, полученных скрещиванием гипертензивных (МНS) и нормотензивных (МNS) крыс (F1 MHSхMNS), у которых стволовые клетки костного мозга были инактивированы при облучении жесткой гамма-радиацией, активность NКСС была увеличена после пересадки костного мозга от MHS, но не MNS [27]. Эти данные указывали на то, что увеличенная активность NКСС является наследуемым фактором, нежели результатом долгосрочного воздействия повышенного артериального давления (АД).
- 2. В эритроцитах гибридов второго поколения, полученных при скрещивании гипертензивных и нормотензивных крыс (F_2 SHRxWKY; F2 MHSxMNS), активность NKCC коррелировала с величиной АД [27, 56].
- 3. Рядом исследователей было установлено, что артериальное давление снижено у *NKCC1*-/-мышей [57–59]. Следует отметить, что S.M. Кіт и соавт. не удалось обнаружить этих различий [60]. Причины этого противоречия остаются неизвестными.
- 4. Введение селективного ингибитора $Na^+,K^+,-2C\Gamma$ котранспорта буметанида приводило к быстрому снижению $A\Delta$ у контрольных, но не у $NKCC1^{-/-}$ мышей [61].

МЕХАНИЗМ ВОВЛЕЧЕНИЯ NKCC1 В РЕГУЛЯЦИЮ АРТЕРИАЛЬНОГО ДАВЛЕНИЯ

Если нарушения ионного транспорта, рассмотренные выше, ограничены эритроцитами, то они могут быть вовлечены в патогенез гипертонической болезни через изменение реологических свойств крови, приводящих к увеличению периферического сопротивления системы кровообращения. С этим наблюдением согласуются данные об ухудшении реологических параметров крови крыс SHR [62-64], что, по-видимому, обусловлено изменениями микровязкости мембраны эритроцитов, продемонстрированной при сравнении теней эритроцитов SHR и крыс нормотензивного контроля [65, 66]. Согласно мембранной концепции, предложенной Ю.В. Постновым, структурно-функциональные нарушения, обнаруженные в эритроцитах, вовлечены в патогенез гипертонической болезни через их проявления в органах, вовлеченных в долгосрочное поддержание повышенного АД. Ниже мы рассмотрим это положение на примере роли NKCC1 в регуляции тонуса сосудов. Сведения о роли ионных транспортеров в активации сервомеханизмов поддержания повышенного давления через изменение функционирования почек и симпатической нервной системы рассмотрены ранее [17, 67].

NKCC1 является единственной изоформой Na+,K+,2Cl котранспорта, идентифицированной в эритроцитах и ГМК. В отличие от доминирующей роли проводимости плазматической мембраны для К (Р, в формировании электрического сопротивления и потенциала (E_{m}) покоящихся клеток скелетной и сердечной мускулатуры, значения $P_{_{K}}$ и $P_{_{Cl}}$ в ГМК различаются незначительно [68]. Эта особенность предполагает участие соотношения $[C\Gamma]/[C\Gamma]_0$, а следовательно, и NKCC1 в регуляции E_{m} и сопряжения возбуждения и сокращения ГМК. В самом деле, фуросемид и буметанид уменьшали [Cl-], [69, 70] и вызывали гиперполяризацию ГМК сосудов крысы [69]. Эти данные позволили предположить, что в основе снижение базального тонуса ГМК, обнаруженного при действии петлевых диуретиков [71-73], а также подавления этими соединениями сокращения полосок гладкой мускулатуры в ответ на умеренное увеличение [К+] [70], электрическую стимуляцию [74], добавление гистамина [75], ангиотензина II [76], тробмоксана A2 [77, 78], окситоцина [79, 80], агонистов α-адренергических [61, 70, 81, 82] и пуринергических рецепторов [83], лежат СІ,-зависимая гиперполяризация и

снижение активности потенциал-зависимых Ca^{2+} каналов L-типа.

При анализе имеющихся данных мы обратили внимание на то, что сосудорасслабляющее действие петлевых диуретиков увеличивается при замене бикарбонатного буфера на трис-буфер. Так, например, в отсутствие НСО, буметанид вызывал 10-кратное уменьшение сокращения аорты крысы, вызванное фенилэфрином [70], в то время как при использовании бикарбонатного буфера буметанид уменьшал этот параметр на 5-10% [81]. В дополнительных экспериментах мы показали, что добавление к трис-буферу 25 mM NaHCO, снижает ингибирующее действие буметанида на сокращения брыжеечных артерий крысы, вызванные 30 mM KCl и фенилэфрина в 5 и 3 раза fold соответственно [84]. Для объяснения этого явления можно предложить, что присутствие НСО нивелирует роль $Na^+, K^+, 2C\Gamma$ котранспорта за счет активации анионных обменников. В самом деле, как видно из рис. 2, при наличии анионов бикарбоната следует ожидать активацию Na+, HCO, Т котранспорта, увеличение [НСО₃-], и последующее увеличение [Cl] за счет активации HCO_3^T/Cl обмена. Кроме того, нами обнаружено, что в культуре ГМК аорты крысы добавление 5 тМ NaHCO₃ приводит к 2-кратному уменьшению активности Na+,K+,2Cl котранспорта, регистрируемого по величине буметанид-чувствительной компоненты скорости входа радиоактивного аналога калия 86 Rb [84]. Возможно, что в основе ингибирования Na+,K+,2CГ котранспорта лежит вытеснение анионами бикарбоната хлора из мест его связывания на молекуле NKCC1. Не исключено также, что расхождение экспериментальных данных обусловлено и другими факторами. Так, например, было показано, что буметанид ингибировал сокращение аорты, вызванное добавлением насыщающих концентраций фенилэфрина, у самок, но не самцов крыс, что связано, по-видимому, с половыми особенностями регуляции активности NKCC1 [82].

Данные, рассмотренные в обзоре [85], указывают на то, что наряду с ГМК сосудов, активация NКСС1 может участвовать в патогенезе системной гипертензии через повышение [СГ] в нейронах головного мозга, приводящего к активации симпатической нервной системы. Следует, однако, отметить, что фуросемид (но не буметанид) напрямую ингибирует активность рецепторов гамма-аминомасляной кислоты (GABA-A) [86], т.е. при условии его проникновения через гематоэнцефалический барьер он способен модулировать нейрональную активность независимо от

ингибирования NKCC1. Это обстоятельство существенно затрудняет проверку данной гипотезы.

МОЛЕКУЛЯРНЫЕ МЕХАНИЗМЫ АКТИВАЦИИ NKCC1 ПРИ ПЕРВИЧНОЙ ГИПЕРТЕНЗИИ

Было обнаружено, что ингибирующее действие буметанида на сокращение брыжеечных артерий в ответ на активацию фенилэфрином α-адренергических рецепторов увеличено у гипертензивных крыс SHR по отношению к нормотензивному контроля [87, 88]. Механизмы, приводящие к активации NKCC1 при первичной гипертензии, остаются малоизученными, что, по-видимому, отражает как полигенно-мозаичную природу этой болезни, так и множественные механизмы регуляции активности этого переносчика. Так, например, прирост [Са²⁺], активирует, а сАМР ингибирует активность этого переносчика в ГМК [8, 89, 90]. Многочисленные исследования документировали при первичной гипертензии нарушения в обоих сигнальных системах [91, 92]. Ключевая роль WNK, SPAK и OSR1 киназ в регуляции активности ССС, включая NKCC1, NKCC2 и NCC, рассмотрена нами ранее [85], а их участие в регуляции артериального давления продемонстрировано на примере моногенных гипертензий [93, 94] и генетически модифицированных животных [95]. Так, S. Bergaya и соавт. сообщили, что у Wnk^+ -мышей снижено фосфорилирование NKCC1 и наблюдается рост артериального давления в ответ на активацию α-адренергических рецепторов [96]. Буметанид-чувствительная компонента сокращения сосудов была также снижена у мышей, накаутированных по SPAK [97]. Следует, однако, отметить, что в отличие от моногенных гипертензий, мутаций генов ССС и регуляторного каскада WNK/SPAK/OSR1 при первичной гипертензии не обнаружено.

Недавно проведенные исследования показали, что содержания как NKCC1мPHK, так и NKCC1 белка увеличено в аорте, сердце и нейронах ПВЯ крыс со спонтанной гипертензией [87, 98]. По крайней мере, в случае аорты и сердца SHR повышенная экспрессия этого переносчика сопровождается снижением метилирования промотора NKCC1 гена [87]. Следует также отметить, что метилирование NKCC1 промотора увеличивалось с возрастом у нормотензивных и не изменялось у гипертензивных животных [88]. Было также установлено, что активность ДНК метилтрансферазы 3В (DNTB3B) в 3 раза выше у 18-недельных нормотензивных крыс по сравнению с SHR того же возраста. Эти исследования предполагают, что

при экспериментальной модели первичной гипертензии гипометилирование NKCC1 промотора является следствием снижения активности DNTB3B, что в свою очередь приводит к повышению экспрессии NKCC1, увеличению [Cl-], сосудистого тонуса и системного АД, а также деполяризации ГМК. Роль эпигенетических факторов в повышении экспрессии NKCC1 в нейронной ПВЯ SHR, определяющих увеличение активности СНС, остается неисследованной. Было обнаружено, однако, что в этих клетках повышено гликозилирование NKCC1 [98], что, по-видимому, способствует увеличению содержания мембранносвязанного белка, т.е. той его фракции, которая принимает участие в транспорте одновалентных ионов.

ИНГИБИРОВАНИЕ NKCC1 СОПРОВОЖДАЕТСЯ ПОДАВЛЕНИЕМ МИОГЕННОГО ОТВЕТА

Основной причиной преждевременной смерти больных гипертонической болезнью является долгосрочное воздействие повышенного АД на такие органы-мишени, как сосуды головного мозга и почек [99]. В первом случае увеличивается вероятность необратимого нарушения кровотока и возникновения инсульта, а во втором — структурные изменения нефрона приводят к нарушениям водно-солевого гомеостаза и протеинурии [100].

Под миогенным тонусом (ответом) понимается уникальное свойство сосудов с диаметром <100-200 мкм: вслед за незначительным увеличением диаметра в ответ на прирост давления заполняющей их жидкости радиус таких сосудов существенно уменьшается. Было установлено, что буметанид уменьшает миогенный тонус брыжеечных артерий [101] и полностью устраняет миогенный ответ афферентных артериол почек [78]. В нашей лаборатории было обнаружено, что ингибирующее действие буметанида, но не ингибитора потенциал-зависимых Ca²⁺ каналов L-типа никардипина на миогенный тонус, а также сокращение в ответ на α-адренергическую стимуляцию отсутствует в брыжеечных артериях, изолированных NKCC1-/- мышей [101]. Так как NKCC2 в ГМК отсутствует, полученные данные можно рассматривать как доказательство того, что буметанид и другие петлевые диуретики подавляют сокращение и миогенный ответ ГМК сосудов через взаимодействие с универсальной изоформой Na+,K+,2Cl- котранспорта NKCC1.

Так как $R_{bf} \sim 1/d^4$, где R_{bf} — сопротивление потоку крови и d — диаметр просвета сосуда [102], роль миогенного тонуса сосудов как созданного природой инструмента защиты органов-мишеней от повышения системного АД изучалось

многими исследователями [103]. Было установлено, что длительное подавление миогенного ответа как следствие гипертрофии сосудистой стенки, отмеченное у больных гипертонической болезнью, понижает чувствительность миогенного ответа к изменениям внутрисосудистого давления, в результате чего скачки системного АД передаются в микроциркуляторное русло, инкорпорированное в головной мозг, сердце, сетчатку глаза, почки и другие органы, что приводит к необратимым изменениям в их структурно-функциональной организации [104, 105]. В этой связи действие антигипертензивных препаратов на миогенный тонус сосудов требует обстоятельного изучения.

Для изучения роли миогенного ответа в функционировании почек была разработана модель изолированной перфузируемой почки, которая позволяет исследовать особенности микроциркуляторной системы этого органа в отсутствии воздействия на нее юкстагломерулярного аппарата. С помощью этой модели было установлено, что буметанид полностью подавляет миогенный ответ афферентной артериолы почек крысы [78]. Результаты этих исследований, рассмотренные в совокупности с данными об отсутствии миогенного ответа у Nkcc1^{-/-} мышей [101], позволили нам предположить, что увеличенная активность NKCC1, документированная при первичной гипертензии на примере эритроцитов, защищает почки от разрушающего воздействия повышенного артериального давления, в то время как хроническое использование фуросемида и других ингибиторов NKCC ускоряет развитие почечной недостаточности, в том числе протеинурии [54, 55, 106]. Иными словами, высокая активность NKCC1 в ГМК афферентной артериолы обеспечивает постоянство почечного кровотока в условиях повышения системного АД, обусловленного увеличенной активностью этого переносчика в брыжеечных артериях и других сосудах, принимающих участие в формировании периферического сопротивления большого круга кровообращения. Эта гипотеза согласуется с 4-кратным увеличением частоты почечных осложнений у больных гипертензией негроидной расы [107, 108], в эритроцитах которых активность NKCC1 в 3 раза ниже по сравнению с больными кавказской расы [106, 109].

ЗАКЛЮЧЕНИЕ

Мы кратко изложили историю открытия нарушений ионного транспорта при первичной гипертензии и сведения о молекулярной природе ионных транспортеров, лежащих в основе этих нарушений. Данные, рассмотренные выше, показывают, что фуросемид и другие петлевые диуретики снижают системное артериальное давление не только за счет ингибирования NKCC2 в восходящем отделе петли Генле, но и подавления активности NKCC1 в ГМК резистентных сосудов. Однако эти же соединения подавляют миогенный ответ ГМК микроциркуляторного русла почек, увеличивая тем самым риск возникновения почечных осложнений. В этой связи мы полагаем, что последующие исследования в данном направлении надо сфокусировать на решении следующих вопросов.

В культуре ГМК и в изолированных сосудах NKCC1 активируется такими вазоконстрикторами, как фенилэфрин и ангиотензин II, и ингибируется вазодиляторами, чье действие опосредовано активацией системы цАМФ [81, 89]. Вовлечена ли эта реципрокная регуляция NKCC1 в изменения сосудистого тонуса указанными выше соединениями?

Ключевая роль NKCC1 в регуляции миогенного ответа ГМК афферентной артериолы почек твердо установлена. Каково относительное участие NKCC1 в регуляции миогенного ответа ГМК микроциркуляторного русла головного мозга и других органов-мишеней? Эти исследования должны привести к разработке новых средств нормализации артериального давления, которые будут лишены побочных эффектов, связанных с ингибированием транспорта ионов в клетках эпителия и миогенного ответа ГМК. Используемые в настоящее время лекарства обладают одинаковым сродством к NKCC1 и NKCC2. Так как кажущееся сродство этих переносчиков как к фуросемиду, так и к буметаниду возрастает по мере увеличения их активности [110], ингибирование высокоактивного NKCC2, следовательно, и диуретическое действие этих соединений должны доминировать по отношению к их сосудорасширяющему эффекту. Длительное использование этих соединений также нежелательно в связи с ингибирование NKCC1 в эпителии внутреннего уха, что сопровождается потерей слуха [111, 112]. Таким образом, разработка новых тканеспецифических ингибиторов NKCC представляется более рациональным подходом антигипертензивной терапии.

ЛИТЕРАТУРА / REFERENCES

1. Орлов С.Н., Данилов В.С., Малков А.Ю., Ребров В.Г. Свободнорадикальное окисление липидов биологических мембран. V. Флуоресценция жирных кислот и фосфолипидов. *Биофизика*. 1975; 20 (2): 228–232.

- [Orlov S.N., Danilov V.S., Malkov A.Yu., Rebrov V.G. Free radical lipid oxidation of biological membranes. V(?). Fluorescence of fatty acids and phospholipids. *Biophysics*. 1975; 20 (2): 228–232].
- Jones A.W. Altered ion transport in vascular smooth muscle from spontaneously hypertensive rats. *Influence of Aldosterone*, Norepinephrine and Angiotensin. 1973; 33: 563-572.
- 3. Folkow B., Grimby G., Thulesius O. Adaptive structural changes of the vascular walls in hypertension and their relation to the control of the peripheral resistance. *Acta Physiol. Scand.* 1958; 44 (3–4): 255–272.
- 4. Постнов Ю.В., Орлов С.Н., Шевченко А.С. Изменение проницаемости мембраны эритроцитов у крыс со спонтанной гипертензией. *Кардиология*. 1975; 15 (1): 88–92. [Postnov Yu.V., Orlov S.N., Shevchenko A.S. Change in erythrocyte membrane permeability in rats with spontaneous hypertension. *Cardiology*. 1975; 15 (1): 88–92 (in Russ.)].
- 5. Postnov Yu.V., Orlov S.N., Gulak P.V., Shevchenko A.S. Altered permeability of the erythrocyte membrane for sodium and potassium in spontaneously hypertensive rats. *Pflugers Archiv*. 1976; 365 (2–3): 257–263.
- 6. Ben-Ishay D., Aviram A., Viskoper R. Increased erythrocytes sodium efflux in genetic hypertensive rat of the Hebrew University strain. *Experientia*. 1975; 31 (6): 660–662.
- Friedman S.M., Nakashima M., McIndoe R.A., Friedman C.L. Increased erythrocyte permeability to Li and Na in the spontaneously hypertensive rats. *Experientia*. 1976; 32(4): 476–478.
- Friedman S.M., Nakashima M., McIndoe R.A. Glass electrode measurement of net Na⁺ and K⁺ fluxes in erythrocytes of the spontaneously hypertensive rats. Can. J. Physiol. Pharamacol. 1977; 55 (6): 1302-1310.
- Postnov Yu.V., Orlov S.N., Shevchenko A.S., Adler A.M. Altered sodium permeability, calcium binding and Na-K-ATPase activity in the red blood cell membrane in essential hypertension. *Pflugers Archiv*. 1977; 371 (3): 263-269.
- 10. Orlov S.N., Riazhski G.G., Kravtsov G.M., Postnov Yu.V. Relation between abnormalities of erythrocyte membrane permeability for monovalent ions and intracellular distribution of calcium in primary hypertension. *Kardiologiya*. 1984; 24 (3): 87–95.
- 11. Postnov Yu.V., Orlov S.N. Cell membrane alteration as source of primary hypertension. *J. Hypertens.* 1984; 2 (1): 1-6.
- 12. Postnov Yu.V., Orlov S.N. Ion transport across plasma membrane in primary hypertension. *Physiol. Rev.* 1985; 65 (4): 904–945.
- 13. Orlov S.N., Adragna N., Adarichev V.A., Hamet P. Genetic and biochemical determinants of abnormal monovalent ion transport in primary hypertension. *Am. J. Physiol.* 1999; 276 (3): C511–C536. DOI: 10.1152/ajpcell.1999.276.3.C511.

- 14. Orlov S.N. Hypertension. In: Bernhardt I., Ellory J.C. (Eds). Red cell membrane transport in health and disease. Berlin, Springer, 2003; 587–602.
- 15. Постнов Ю.В., Орлов С.Н. Первичная гипертензия как патология клеточных мембран. М.: Медицина, 1987: 192. [Postnov Yu.V., Orlov S.N. Primary hypertension as the pathology of cell membranes. Moscow: Medicine Publ., 1987: 192 (in Russ.)].
- 16. Postnov Yu.V., Orlov S.N. Alteration of cell membrane in primary hypertension. In: Jenest J., Kuchel O., Hamet P., Cantin M. (Eds). Hypertension. Physiolpathology and treatment. New York: McGraw-Hill, 1983; 95–108.
- 17. Orlov S.N., Mongin A.A. Salt sensing mechanisms in blood pressure regulation and hypertension. *Am. J. Physiol. Heart Circ. Physiol.* 2007; 293 (4): H2039–H2053.
- 18. Schermann J., Briggs J.P. Tubuloglomerular feedback: mechanistic insights from gene-manipulated mice. *Kidney Int.* 2008; 74 (4): 418–426. DOI: 10.1038/ki.2008.145.
- Noda M., Hiyama T.Y. Sodium sensing in the brain. Pfluger Arch. – Eur. J. Physiol. 2015; 467 (3): 465–474. DOI: 10.1007/s00424-014-1662-4.
- 20. Zicha J. Red cell ion transport abnormalities in experimental hypertension. *Fundam. Clin. Pharmacol.* 1993; 7(3-4): 129-141.
- 21. Zidek V., Vetter H., Zumkley H. Intracellular cation activities and concentrations in spontaneously hypertensive and normotensive rats. *Clin. Sci.* 1981; 61 (Suppl. l.): 41–43.
- 22. Orlov S.N., Pokudin N.I., Kotelevtsev Yu.V., Postnov Yu.V. Characteristics of the structural-functional organization of erythrocyte membrane in three strains of spontaneously hypertensive rats. *Kardiologiya*. 1988; 28 (1): 57–63.
- 23. Yokomatsu M., Fujito K., Numahata H., Koide H. Erythrocyte sodium ion transport system in DOC-salt, goldblatt and spontaneously hypertensive rats. *Scand. J. Clin. Lab. Invest.* 1992; 52 (6): 497–506.
- 24. Pravenec M., Klir P., Kren V., Zicha J., Kunes J. An analysis of spontaneous hypertension in spontaneously hypertensive rats by means of new recombinant inbred strains. *J. Hypertens.* 1989; 722 (7): 217–221.
- 25. Orlov S.N., Petrunyaka V.V., Kotelevtsev Yu.V., Postnov Yu.V., Kunes J., Zicha J. Cation transport and adenosine triphosphatase activity in rat erythrocytes: a comparison of spontaneously hypertensive rats with normotensive Brown Norway strain. *J. Hypertens.* 1991; 9 (10): 977–982.
- 26. Salvati P., Ferrario R.G., Parenti P., Bianchi G. Renal function of isolated perfused kidneys from hypertensive (MHS) and normotensive (MNS) rats of the Milan strain: role of calcium. *J. Hypertens.* 1987; 5 (1): 31–38.
- Bianchi G., Ferrari P., Trizio P. et al. Red blood cell abnormalities and spontaneous hypertension in rats. A genetically determined link. *Hypertension*. 1985; 7 (3 Pt. 1): 319–325.
- 28. Rapp J.P., Dene H. Development and characterizatics of inbred strains of Dahl salt-sensitive and salt-resistant rats. *Hypertension*. 1985; 7 (3 Pt. 1): 340–349.

- 29. Zicha J., Duhm J. Kinetics of Na⁺ and K⁺ transport in red blood cells of Dahl rats. Effect of age and salt. *Hypertension*. 1990; 15 (6 Pt 1): 612-627.
- 30. McCormick C.P., Hennessy J.F., Rauch A.L., Buckalew V.M. Erythrocyte sodium concentration and in weanling Dahl rats. *Am. J. Hypertens.* 1989; 2 (8): 604–609.
- 31. Akera T., Ng Y.-C., Shien I.-S., Bero E., Brody T.M., Braselton W.E. Effects of K⁺ on the interaction between cardiac glycosides and Na,K-ATPase. *Eur. J. Pharmacol.* 1985; 111 (2): 147–157.
- 32. Zicha J., Dobesova Z., Vokurkova M., Kunes J. Abnormal Na,K-pump activity cosegregates with blood pressure in Dahl SS/Jr x SR/jr F2 hybrids fed a high-salt diet since weaning (Abstract). *Hypertension*. 1999; 34: 708.
- 33. Orlov S.N., Akimova O.A., Hamet P. Cardiotonic steroids: novel mechanisms of Na+i-mediated and -independent signaling involved in the regulation of gene expression, proliferation and cell death. *Curr. Hypertens. Rev.* 2005; 1: 243–257.
- 34. Leenen F.H.H. The central role of the brain aldosterone-«ouabain» pathway in salt-sensitive hypertension. *Biochim. Biophys. Acta.* 2010; 1802 (12): 1132–1139. DOI: 10.1016/j.bbadis.2010.03.004.
- 35. Bagrov A.Y., Shapiro J.I., Fedorova O.V. Endogenous cardiotonic steroids: physiology, pharmacology, and novel therapeutic targets. *Pharmacol. Rev.* 2009; 61 (1): 9–38. DOI: 10.1124/pr.108.000711.
- Blaustein M.P., Zhang J., Chen L., Hamilton B.P. How does salt retention raise blood pressure? Am. J. Physiol. Regul. Integr. Comp. Physiol. 2006; 290 (3): R514-R523.
- Canessa M.L., Adragna N., Solomon H.S, Connoly T.M., Tosteson D.C. Increased sodium-lithium countertransport in red cells of patients with essential hypertension. New Engl. J. Med. 1980; 302 (14): 772-776.
- 38. Elmariah S., Gunn R.B. Kinetic evidence that the Na-PO₄ cotransporter is the molecular mechanism for Na/Li exchange in human red blood cells. *Am. J. Physiol. Cell Physiol.* 2003; 285 (2): C446-C456.
- 39. Кольцова С.В., Акимова О.А, Котелевцев С.В., Хамет П., Орлов С.Н. Увеличенный Na⁺/Li⁺ противотранспорт в эритроцитах больных гипертонической болезнью не опосредован активацией Na⁺,Pi котранспорта. *Артериальная гипертензия*. 2010; 16 (4): 385–389. [Koltsova S.V., Akimova O.A., Kotelevtsev S.V., Khamet P., Orlov S.N. An increased Na⁺ / Li⁺ countertransport in the erythrocytes of patients with hypertensive disease is not mediated by the activation of Na⁺, Pi co-transport. *Arterial hypertension*. 2010; 16 (4): 385–389] (in Russ.).
- Koltsova S.V., Trushina Yu.A., Akimova O.A., Hamet P., Orlov S.N. Molecular origin of Na⁺/Li⁺ exchanger: evidence against the involvement of major cloned erythrocyte transporters. *Pathophysiology*. 2011; 18 (3): 207–213. DOI: 10.1016/j.pathophys.2010.12.001.
- 41. Orlov S.N., Pokudin N.I., Ryazhskii G.G., Kotelevtsev Yu.V. Valinomycin induces Na⁺/H⁺ exchange in rat

- erythrocytes: peculiarities of the effect of protein kinase A and C. *Biol. Membr.* 1987; 4: 1036-1046.
- 42. Orlov S.N., Pokudin N.I., Kotelevtsev Yu.V., Gulak P.V. Volume-dependent regulation of ion transport and membrane phosphorylation in human and rat erythrocytes. *J. Membrane Biol.* 1989; 107: 105–117.
- 43. Wooden J.M., Finney G.L., Rynes E. et al. Comparative proteomics reveals deficiency of *SLC9A1* (sodium/hydrogen exchanger NHE1) in b-adducin null red cells. *Br. J. Haematol.* 2011; 154: 492–501. DOI: 10.1111/j.1365-2141.2011.08612. x.
- 44. Geering K. Na, K-ATPase. Curr. Opin. Nephrol. Hypert. 1997; 6 (5): 434-439.
- 45. Orlov S.N., Postnov I.Yu., Pokudin N.I., Kukharenko V.Yu., Postnov Yu.V. Na⁺/H⁺ exchange and other ion transport systems in erythrocytes of essential hypertensives and spontaneously hypertensive rats. *J. Hypertens*. 1989; 7 (10): 781–788.
- 46. Pontremoli R., Spalvins A., Menachery A., Torielli L., Canessa M. Red cell sodium-proton exchange is increased in Dahl salt-sensitive hypertensive rats. *Kidney Int.* 1992; 42 (6): 1335–1362.
- 47. Orlov S.N., Kuznetsov S.R, Pokudin N.I., Tremblay J., Hamet P. Can we use erythrocytes for the study of the activity of ubiquitous Na⁺/H⁺ exchanger (NHE-1) in essential hypertension? *Am. J. Hypertens.* 1998; 11 (7): 774–783.
- 48. Niu J., Vaiskunaite R., Suzuki N. et al. Interaction of heterotrimeric G13 protein with an A-kinase-anchoring protein 110 (AKAP110) mediates cAMP-independent PKA activation. *Curr. Biol.* 2001; 11 (21): 1688–1690.
- 49. Orlov S.N., Adarichev V.A., Devlin A.M. et al. Increased Na⁺/H⁺ exchanger isoform 1 activity in spontaneously hypertensive rats: lack of mutations within coding region of NHE1. *Biochim. Biophys. Acta.* 2000; 1500 (2): 169–180.
- 50. Hediger M.A., Romero M.F., Peng J.-B., Rolfs A., Takanaga H., Bruford E.A. The ABCs of solute carriers: physiological, pathophysiological and therapeutic implications of human membrane transport protein. *Pfluger*. *Arch. – Eur. J. Physiol.* 2004; 447 (5): 465–468.
- 51. Gamba G. Molecular physiology and pathophysiology of electroneutral cation-chloride cotransporters. *Physiol. Rev.* 2005; 85 (2): 423–493.
- 52. Markadieu N., Delpire E. Physiology and pathophysiology of SLC12A1/2 transporters. *Pfluger. Arch. Eur. J. Physiol.* 2014; 466 (1): 91–105. DOI: 10.1007/s00424-013-1370-5.
- 53. Garay R.P., Alda O. What can we learn from erythrocyte Na-K-Cl cotransporter NKCC1 in human hypertension. *Pathophysiology*. 2007; 14 (3-4): 167-170.
- 54. Orlov S.N., Tremblay J., Hamet P. NKCC1 and hypertension: a novel therapeutic target involved in regulation of vascular tone and renal function. *Curr. Opin. Nephrol. Hypert.* 2010; 19 (2): 163–168. DOI: 10.1097/MNH.0b013e3283360a46.

- 55. Orlov S.N., Koltsova S.V., Tremblay J., Baskakov M.B., Hamet P. NKCC1 and hypertension: role in the regulation of vascular smooth muscle contractions and myogenic tone. *Ann. Med.* 2012; 44: S111–S118. DOI: 10.3109/07853890.2011.653395.
- 56. Kotelevtsev Yu.V., Orlov S.N., Pokudin N.I., Agnaev V.M., Postnov Yu.V. Genetic analysis of inheritance of Na⁺,K⁺ cotransport, calcium level in erythrocytes and blood pressure in F2 hybrids of spontaneously hypertensive and normotensive rats. *Bull. Exp. Biol. Med.* 1987; 103: 456–458.
- 57. Flagella M., Clarke L.L., Miller M.L. et al. Mice lacking the basolateral Na-K-2Cl cotransporter have impaired epithelial chloride secretion and are profoundly deaf. *J. Biol. Chem.* 1999; 274 (38): 26946–26955.
- 58. Meyer J.W., Flagella M., Sutliff R.L. et al. Decreased blood pressure and vascular smooth muscle tone in mice lacking basolateral Na⁺-K⁺-2Cl⁻ cotransporter. Am. J. Physiol. 2002; 283 (5): H1846-H1855.
- Wall S.M., Knepper M.A., Hassel K.A. et al. Hypotension in NKCC1 null mice: role of the kidney. Am. J. Physiol. Renal. Physiol. 2006; 290 (2): F409-F416.
- 60. Kim S.M., Eisner C., Faulhaber-Walter R. et al. Salt sensitivity of blood pressure in NKCC1-deficient mice. Am. J. Physiol. Renal. Physiol. 2008; 295 (4): F1230-F1238. DOI: 10.1152/ajprenal.90392.2008.
- 61. Garg P., Martin C., Elms S.C. et al. Effect of the Na-K-2Cl cotransporter NKCC1 on systematic blood pressure and smooth muscle tone. *Am. J. Physiol. Heart Circ. Physiol.* 2007; 292 (5): H2100-H2105.
- 62. Lominadze D., Joshua I.G., Schuschke D.A. Blood flow shear rates in arterioles of spontaneously hypertensive rats at early and established stages of hypertension. *Clin. Exp. Hypertens.* 2011; 23: 317–328.
- 63. Hussein G., Goto H., Oda S. et al. Antihypertensive potential and mechanism of action of astaxanthin: II Vascular reactivity and hemotheology in spontaneously hypertensive rats. *Biol. Pharm. Bull.* 2015; 28: 967–971.
- 64. Plotnikov M.B., Aliev O.I., Shamanaev A.Y. et al. Effects of pentoxifylline on hemodynamic, hemorheological, and microcirculatory parameters in young SHRs during arterial hypertension development. *Clin. Exp. Hypertens*. 2017; 39: 570–578.
- 65. Orlov S.N., Gulak P.V., Litvinov I.S., Postnov Yu.V. Evidence of altered structure of the erythrocyte membrane in spontaneously hypertensive rats. *Clin. Sci.* 1982; 63: 43–45.
- 66. Gulak P.V., Orlov S.N., Pokudin N.I. et al. Microcalorimetry and electrophoresis of the erythrocyte membrane of spontaneously hypertensive rats. *J. Hypertens*. 1984; 2 (1): 81–84.
- 67. Orlov S.N., Koltsova S.V., Kapilevich L.V., Gusakova S.V., Dulin N.O. NKCC1 and NKCC2: The pathogenetic role of cation-chloride cotransporters in hypertension. Genes & Diseases. 2015; 2 (2): 186–196.
- 68. Chipperfield A.R., Harper A.A. Chloride in smooth muscle. *Prog. Biophys. Mol. Biol.* 2001; 74 (3-5): 175-221.

- 69. Davis J.P.L., Chipperfield A.R., Harper A.A. Accumulation of intracellular chloride by (Na-K-Cl) cotransport in rat arterial smooth muscle is enhanced in deoxycorticosterone acetate (DOCA) / salt hypertension. *J. Mol. Cell Cardiol.* 1993; 25 (3): 233–237.
- 70. Anfinogenova Y.J., Baskakov M.B., Kovalev I.V., Kilin A.A., Dulin N.O., Orlov S.N. Cell-volume-dependent vascular smooth muscle contraction: role of Na⁺-K⁺-2Cl⁻ cotransport, intracellular Cl⁻ and L-type Ca²⁺ channels. *Pflugers. Arch. Eur. J. Physiol.* 2004; 449 (1): 42–55.
- 71. Barthelmebs M., Stephan D., Fontaine C., Grima M., Imbs J.L. Vascular effects of loop diuretics: an *in vivo* and *in vitro* study in the rat. *Naunyn-Schmiedebergs* Arch. Pharmacol. 1994; 349 (2): 209-216.
- 72. Lavallee S.L., Iwamoto L.M., Claybaugh J.R., Dressel M.V., Sato A.K., Nakamura K.T. Furosemide-induced airway relaxation in guinea pigs: relation to Na-K-2Cl cotransporet function. Am. J. Physiol. 1997; 273: L211–L216.
- 73. Tian R., Aalkjaer C., Andreasen F. Mechanisms behind the relaxing effect of furosemide on the isolated rabbit ear artery. *Pharmacol. Toxicol.* 1990; 67 (5): 406–410.
- 74. Kovalev I.V., Baskakov M.B., Anfinogenova Y.J. et al. Effect of Na⁺-K⁺-2Cl⁻ cotransport inhibitor bumetanide on electrical and contractile activity of smooth muscle cells in guinea pig ureter. *Bull. Exp. Biol. Med.* 2003; 136 (8): 145–149.
- 75. Kovalev I.V., Baskakov M.B., Medvedev M.A. et al. Na⁺-K⁺-2Cl⁻ cotransport and chloride permeability of the cell membrane in mezaton and histamine regulation of electrical and contractile activity in smooth muscle cells from the guinea pig ureter. *Russian Physiol. J.* 2008; 93 (3): 306–317.
- 76. Stanke F., Devillier P., Breant D. et al. Furosemide inhibits angiotensin II-induced contraction on human vascular smooth muscle. *Br. J. Clin. Pharmacol.* 1998; 46 (6): 571–575.
- 77. Stanke-Labesque F., Craciwski J.L., Bedouch P. et al. Furosemide inhibits thrombaxane A2-induced contraction in isolated human internal artery and saphenous vein. *J. Cardiovasc Pharmacol.* 2000; 35: 531–537.
- 78. Wang X., Breaks J., Loutzenhiser K., Loutzenhiser R. Effects of inhibition of the Na⁺-K⁺-2Cl⁻ cotransporter on myogenic and angiotensin II responses of the rat afferent arteriole. *Am. J. Physiol. Renal. Physiol.* 2007; 292: F999–F1006.
- Mozhayeva M.G., Bagrov Y.Y. The inhibitory effects of furosemide on Ca²⁺ influx pathways associated with oxytocin-induced contractions of rat myometrium. *Gen. Physiol. Biophys.* 1995; 14 (5): 427–436.
- Mozhayeva M.G., Bagrov Y.Y., Ostretsova I.B., Gillespie J.I. The effect of furosemide on oxytocin-induced contractions of the rat myometrium. *Exp. Physiol.* 1994; 79 (5): 661–667.
- 81. Akar F., Skinner E., Klein J.D., Jena M., Paul R.J., O'Neill W.C. Vasoconstrictors and nitrovasodilators reciprocally regulate the Na⁺-K⁺-2Cl⁻ cotransporter in rat aor-

- ta. Am. J. Physiol. 1999; 276 (6): C1383-C1390. DOI: 10.1152/ajpcell.1999.276.6.C1383.
- 82. Palacios J., Espinoza F., Munita C., Cifuentes F., Michea L. Na⁺-K⁺-2Cl⁻cotransporter is implicated in gender differences in the response of the rat aorta to phenylephrine. *Br. J. Pharmacol.* 2006; 148 (7): 964–972.
- 83. Koltsova S.V., Maximov G.V., Kotelevtsev S.V. et al. Myogenic tome in mouse mesenteric arteries: evidence for P2Y receptor-mediated, Na⁺-K⁺-2C cotransport-dependent signaling. *Purinergic Signaling*. 2009; 5 (3): 343–349. DOI: 10.1007/s11302-009-9160-4.
- 84. Koltsova S.V., Luneva O.G., Lavoie J.L. et al. HCO₃-dependent impact of Na⁺-K⁺-2Cl⁻ cotransport in vascular smooth muscle excitation-contraction coupling. *Cell Physiol. Biochem.* 2009; 23 (4–6): 407–414. DOI: 10.1159/000218187.
- 85. Орлов С.Н., Кольцова С.В., Капилевич Л.В., Дулин Н.О., Гусакова С.В. Котранспортеры катионов и хлора: регуляция, физиологическое значение и роль в патогенезе артериальной гипертензии. Успехи биологической химии. 2014; 54: 267–298. [Orlov S.N., Koltsova S.V., Kapilevich L.V., Dulin N.O., Gusakova S.V. Cotransporters of cations and chlorine: regulation, physiological significance and role in the pathogenesis of arterial hypertension. Advances in Biological Chemistry. 2014; 54: 267–298 (in Russ.)].
- Korpi E.R., Luddens H. Furosemide interactions with brain GABAA receptors. Br. J. Pharmacol. 1997; 120: 741-748.
- 87. Lee H.-A., Baek I., Seok Y.M. et al. Promoter hypomethylation upregulates Na⁺-K⁺-2Cl⁻ cotransporyter 1 in spontaneously hypertensive rats. *Biochem. Biophys. Res. Commun.* 2010; 396 (2): 252–257. DOI: 10.1016/j. bbrc.2010.04.074.
- 88. Cho H.-M., Lee H.-A., Kim H.Y., Han H.S., Kim I.K. Expression of Na⁺-K⁺-2Cl⁻ cotransporter is epigenetically regulated during postnatal development of hypertension. *Am. J. Hypertens.* 2011; 24 (12): 1286–1293. DOI: 10.1038/ajh.2011.136.
- 89. Orlov S.N., Resink T.J., Bernhardt J., Buhler F.R. Na⁺-K⁺ pump and Na⁺-K⁺ co-transport in cultured vascular smooth muscle cells from spontaneously hypertensive rats: baseline activity and regulation. *J. Hypertens.* 1992; 10 (8): 733–740.
- 90. Jiang G., Cobbs S., Klein J.D., O'Neill W.C. Aldosterone regulates the Na-K-Cl cotransporter in vascular smooth muscle. *Hypertension*. 2003; 41 (5): 1131–1135.
- 91. Orlov S.N., Li J.-M., Tremblay J., Hamet P. Genes of intracellular calcium metabolism and blood pressure control in primary hypertension. *Seminar in Nephrology*. 1995; 15 (6): 569–592.
- 92. Hamet P., Orlov S.N., Tremblay J. Intracellular signalling mechanisms in hypertension. In: Laragh J.H., Brenner B.M. (Eds). Hypertension: pathophysiology, diagnosis, and treatment. New York, Raven Press, 1995: 575–608.
- 93. Kahle K.T., Rinehart J., Giebisch G., Gamba G., Hebert S.C., Lifton R.P. A novel protein kinase signaling pathway es-

- sential for blood pressure regulation in humans. *Trends Endocrin. Metab.* 2008; 19 (3): 91–95. DOI: 10.1016/j. tem.2008.01.00.1
- 94. Susa K., Kita S., Iwamoto T. et al. Effect of heterozygous deletion of WNK1 on the WNK-OSR1/SPAK-NCC/NKCC1/NKCC2 signal cascade in the kidney and blood vessels. *Clin. Exp. Nephrol.* 2012; 16 (4): 530–538.
- 95. Rafigi F.H., Zuber A.M., Glover M. et al. Role of the WNK-activated SPAK kinase in regulating blood pressure. *EMBO Mol. Med.* 2010; 2 (2): 63–75. DOI: 10.1002/emmm.200900058.
- Bergaya S., Faure S., Baudrie V. et al. WNK1 regulates vasoconstriction and blood pressure response to a1-adrenergic stimulation in mice. *Hypertension*. 2011;
 (3): 439–445. DOI: 10.1161/HYPERTENSIONA-HA.111.172429.
- 97. Yang S.-S., Lo Y.-F., Wu C.-C. et al. SPAK-knockout mice manifest Gitelman syndrome and impaired vasoconstriction. *J. Am. Soc. Nephrol.* 2010; 21 (11): 1868–1877. DOI: 10.1681/ASN.2009121295.
- 98. Ye Z.-Y., Li D.-P., Byun H.S., Li L., Pan H.-L. NKCC1 upregulation disrupts chloride homeostasis in the hypothalamus and increases neuronal-sympathetic drive in hypertension. *J. Neurosci.* 2012; 32 (25): 8560–8568. DOI: 10.1523/JNEUROSCI.1346-12.2012.
- 99. Janardhan V., Qureshi A.I. Mechanisms of ischemic brain injury. *Curr. Cardiol. Rep.* 2004; 6 (2): 117–123.
- 100. O'Shaughnessy K.M., Karet F.E. Salt handling in hypertension. *Annu. Rev. Nutr.* 2006; 26: 343-365.
- 101. Koltsova S.V., Kotelevtsev S.V., Tremblay J., Hamet P., Orlov S.N. Excitation-contraction coupling in resistant mesenteric arteries: evidence for NKCC1-mediated pathway. *Biochem. Biophys. Res. Commun.* 2009; 379 (4): 1080–1083. DOI: 10.1016/j.bbrc.2009.01.018.
- 102. Folkow B. Cardiovascular «remodeling» in rat and human: time axis, extent, and in vivo relevance. *Physiology*. 2010; 25 (5): 264–265. DOI: 10.1152/physiol.00015.2010.
- 103. Loutzenhiser R., Griffin K., Williamson G., Bidani A. Renal autoregulation: new perspectives regarding the protective and regulatory roles of the unerlying mechanisms. *Am. J. Physiol. Regul. Integr. Comp. Physiol.* 2006; 290 (5): R1153-R1167.
- 104. Liu Y., Gutterman D.D. Vascular control in humans: focus on the coronary micocirculation. *Basic Res. Cardiol.* 2009; 104 (3): 211–227. DOI: 10.1007/s00395-009-0775-y.
- 105. Bidani A., Griffin K.A., Williamson G., Wang X., Loutzenhiser R. Protective importance of the myogenic response in the renal circulation. *Hypertension*. 2009; 54 (2): 393–398. DOI: 10.1161/HYPERTENSIONA-HA.109.133777.
- 106. Orlov S.N. Decreased Na⁺,K⁺,Cl⁻ cotransport and salt retention in blacks: a provocative hypothesis. *J. Hypertens.* 2005; 23 (10): 1929–1930.
- 107. Boone C.A. End-stage renal disease in African-Americans. *Nephrol. Nurs. J.* 2000; 27 (6): 597-600.

- 108. Kotchen T.A., Piering A.W., Cowley A.W. et al. Glomerular hyperfiltration in hypertensive African Americans. *Hypertension*. 2000; 35 (3): 822–826.
- 109. Orlov S.N., Gossard F., Pausova Z. et al. Decreased NKCC1 activity in erythrocytes from African-Americans with hypertension and dyslipidemia. *Am. J. Hypertens* 2010; 23 (3): 321–326. DOI: 10.1038/ajh.2009.249.
- 110. Hannaert P., Alvarez-Guerra M., Pirot D., Nazaret C., Garay R.P. Rat NKCC2/NKCC1 cotransport selectivity
- for loop diuretic drugs. *Naunyn-Schmiedebergs Arch. Pharmacol.* 2002; 365 (3): 193–199.
- 111. Delpire E., Lu J., England R., Dull C., Thorne T. Deafness and imbalance associated with inactivation of the secretory Na-K-2Cl co-transporter. *Nature Genetics*. 1999; 22 (2): 192–195.
- 112. Lang F., Vallon V., Knipper M., Wangemann P. Functional significance of channels and transporters expressed in the inner ear and kidney. *Am. J. Physiol. Cell Physiol.* 2007; 293 (4): C1187–C1208.

Сведения об авторе

Орлов Сергей Николаевич, д-р биол наук, профессор, МГУ им. М.В. Ломоносова, Москва; НИ ТГУ, г. Томск; СибГМУ, г. Томск.

(🖂) Орлов Сергей Николаевич, sergeiorlov@yandex.ru.

Поступила в редакцию 21.12.2018 Подписана в печать 15.04.2019

Author information

Orlov Sergey N., DBSc, Professor, Lomonosov Moscow State University, Moscow; National Research Tomsk State University, Tomsk; Siberian State Medical University, Tomsk, Russian Federation.

(⋈) Orlov Sergey N., sergeiorlov@yandex.ru.

Received 21.12.2018 Accepted 15.04.2019