УДК 616-008.61:316.772.5:681.5

ИГРОВОЕ БИОУПРАВЛЕНИЕ ПРИ СИНДРОМЕ ДЕФИЦИТА ВНИМАНИЯ С ГИПЕРАКТИВНОСТЬЮ

Столлер И.А.¹, Веревкин Е.Г.², Сухоленцева М.В.³

1 Психолого-физиологический центр СДВГ на базе гимназии № 16, г. Новосибирск

РЕЗЮМЕ

Продолжено исследование учащихся с синдромом дефицита внимания с гиперактивностью (СДВГ) при использовании бетастимулирующего игрового нейробиоуправления. Проанализирована динамика сегментных характеристик альфа-ритма и θ/β-коэффициента для разных групп успешности тренинга. Дана оценка эффективности тренинга с точки зрения количества признаков СДВГ (на начало и конец тренинга).

КЛЮЧЕВЫЕ СЛОВА: дети, синдром дефицита внимания с гиперактивностью, тета-бета-коэффициент, бетастимулирующее биоуправление, альфа-сегментный анализ, игровое биоуправление.

Введение

Игровые формы ЭЭГ-биоуправления представляют собой особый вариант медиатренинга. С одной стороны, это, несомненно, гомологи систем «брейн – компьютер – интерфейс». Ребенку в виртуальной среде предоставляется возможность изменить внешний игровой сюжет в единственно возможном направлении: выиграть соревнование и таким образом сформировать новый ЭЭГ-паттерн. С другой стороны – протестировать свой собственный когнитивный стиль и тем самым определить непосредственные доступные естественные когнитивные средства его совершенствования.

Необходимо напомнить, что принципиально (качественно) отличало игровые ЭЭГ-варианты биоуправления. Прежде всего, отсутствие временной неопределенности, столь свойственной всем иным инструментальным технологиям коррекции. Игра всегда начинается стартом, а завершается победой или поражением. Далее, игра, если она синтезирована современными мультимедиасредствами, весьма привлекательное и, если хотите, красивое с точки зрения компьютерной эстетики занятие. Игра мотивирует ребенка на самоусовершенствование on-line, ибо каждая следующая игровая попытка, на чем бы (на каком

физиологическом параметре) она ни строилась, с точки зрения управления и управляемой характеристики есть не что иное, как игра с самим собой через предшествующий результат.

Синдром дефицита внимания с гиперактивностью (СДВГ) — широко распространенное расстройство психической сферы ребенка, сохраняющееся во взрослом состоянии и касающееся 3–20% детей и подростков. По собственным сведениям, базирующимся на многолетнем анализе СДВГ и его распространенности, заболевание в Сибирском федеральном округе охватывает порядка 80 тыс. ребят в возрасте от 8 до 14–15 лет.

Существуют симптомы — маркеры СДВГ, оценивающие степень и глубину расстройства, они все сконцентрированы в табл. 2, динамика которых и служит критерием эффективной нейротерапии, применяемой в школе. Именно на них и в первую очередь на так называемом индексе невнимательности (θ/β) был построен курс нейробиоуправления.

Ранее [1] был проанализирован весь ЭЭГдиапазон и проявлен специальный интерес к некоторым ЭЭГ-эндофенотипам, т.е. электрографическим маркерам

в сочетании с особенностями поведения и эффективностью центральных механизмов саморегуляции. Главное внимание было обращено на α-диапазон и показано (основываясь на параметрах α-сегментного

² НИИ молекулярной биологии и биофизики СО РАМН, г. Новосибирск

³ Новосибирский государственный медицинский университет, г. Новосибирск

[⊠] Веревкин Евгений Георгиевич, тел. 8 (383) 335-97-56; e-mail: ewer@ngs.ru

анализа [2]), что наиболее чувствительными к ЭЭГбиоуправлению оказались амплитуда и внутриальфа-сегментарные связи, являющиеся основными консолидирующими характеристиками электрогенеза, наиболее близкими к поведенческому репертуару.

В данной работе, проведенной в гимназии № 16 г. Новосибирска, преследовались те же цели, что и ранее: сопоставить эффективность нейротерапии, т.е. игрового нейробиоуправления, сочетанного с мониторингом β₁-диапазона ЭЭГ-спектра и динамикой поведения детей, длительно наблюдавшихся в психофизиологическом кабинете.

Материал и методы

Участниками являются воспитанники МБОУ «Гимназия № 16 «Французская». Проект ориентирован на детей образовательных учреждений, детских садов и окружающих их взрослых. Каждый ребенок, пришедший в 1-й класс, проходит диагностику на игровых компьютерных тренажерах с адаптивной обратной связью, психологическое обследование с использованием следующих методик: таблицы Шульте (черно-белые), запоминание 10 слов (А.Р. Лурия), ЦПМ Дж. Равена, тест Тулуз Пьерона, диагностика эмоционального состояния по Люшеру (восьмицветный).

Было обследовано 50 детей в возрасте 7–13 лет, из них больше мальчиков. На основании отбора выделяется группа детей со скрытыми признаками дефицита внимания, тревожных, с низкой способностью к саморегуляции. С этими детьми в дальнейшем ведутся тренинги на игровом тренажере «БОС-Пульс». Количество занятий 10–15. Сбор анамнеза и динамическое наблюдение, осуществляемые психотерапевтом, позволили на основании диагностических критериев (DSM-IV) выявить у 32 человек СДВГ (без выраженной органической патологии мозга и расстройств поведения в виде вызывающей оппозиции; средний возраст этой группы $(7,3\pm1,4)$ года (из них 12 девочек и 20 мальчиков)) и сконцентрировать их в так называемый класс психологической поддержки.

Использование тех же критериев позволило выделить у 12 человек (все мальчики) сочетание СДВГ с расстройствами поведения в виде вызывающей оппозиции. Средний возраст этой группы составил $(12,7\pm0,6)$ года.

У 8 пациентов на основании электроэнцефалографического обследования и данных магнитнорезонансной томографии были диагностированы выраженные органические изменения головного мозга, причиной которых, как правило, была перинатальная пато-

логия; все они состояли на диспансерном учете у невропатолога, их средний возраст составил $(7 \pm 2,3)$ года.

Перед проведением сеансов ЭЭГ-биоуправления проводилась запись стартовой ЭЭГ (система 10×20) с целью контроля патологических изменений и дальнейшего использования для сравнения с финишной ЭЭГ, проводимой после окончания коррекционных сеансов.

Для проведения электроэнцефалографического тренинга использовался программно-аппаратный комплекс «БОСЛАБ», разработанный в НПФ «Компьютерные системы биоуправления» (регистрационный номер ФСР 2011/11236).

Организация тренинга

Структура коррекционного сеанса. Для проведения электроэнцефалографического тренинга учитывались методические рекомендации Дж. Любара, изложенные в статье, опубликованной в коллективной мо-«Биоуправление-3» [3]. В нографии управляющего сигнала использовалась мощность ритма ЭЭГ, по которому проводился тренинг. У пациентов без выраженной органической патологии головного мозга коррекционный сеанс состоял из 4минутной сессии θ/β -стимулирующего тренинга с графическим представлением сигналов, 20-минутной сессии игрового θ/β -стимулирующего тренинга, а также нескольких игровых релаксирующих сеансов (игры «Вира», «Гребной канал», «Магические кубики», «Ралли») [1].

Монтаж электродов. Для проведения θ/β -стимулирующего тренинга применялся биполярный монтаж электродов в точках Fz и Cz первого канала и Fp2 и O2 – второго. В каждом случае на лоб пациента ниже границы роста волос накладывались миографические электроды. Во время θ/β -стимулирующего тренинга пациент сидел с открытыми глазами. Для контроля в начале и в конце сеанса проводились сессии с закрытыми глазами.

При проведении сессий α- и θ-ингибирующего тренинга ученик работал с закрытыми глазами. В этом случае применялся биполярный монтаж электродов в точках F и O на стороне регистрации патологической активности.

В условиях проведения сессий β -стимулирующего тренинга использовался аудиовизуальный канал обратной связи (звуковой сигнал и экранное представление ЭЭГ, по которой проводился тренинг). Проведение α - и θ -ингибирующего тренинга осуществлялось с помощью звукового подкрепления, свидетельствующего об эффективности тренинга: θ/β -тренинг осуществлялся в режиме игрового сопровождения.

Стимулирующего тренинга, Первые коррекционные сеансы состояли преимущественно из игровых релаксирующих сессий. Это было вызвано необходимостью установления контакта с пациентом, формирования уверенности, позволяющей выигрывать, изменяя свое состояние в оптимальном направлении. По мере того как пациент адаптировался к обстановке и приобретал навыки релаксации (обычно это происходило не позднее пятого сеанса), коррекционный сеанс строился таким образом, как это было описано выше. Начиная с 1-го сеанса параллельно с сессией θ/β-стимулирующего тренинга, как правило, применялась дополнительная нагрузка (чаще всего устный счет, прослушивание текстов и т.д.).

Во всех случаях сеансы проводились два-три раза в неделю, длительность каждого не превышала 40 мин, время определялось школьным расписанием пациента.

«Клинические» и академические результаты тренинга. Как и предполагалось, наилучшие результаты были достигнуты при работе с пациентами первой группы. В соответствии с диагностическими критериями DSM-IV в результате коррекционного курса у 24 пациентов была зарегистрирована положительная динамика синдрома дефицита внимания, у шести — частичная ремиссия, у двух пациентов не было зарегистрировано улучшения состояния (рис. 1, 2).

Оптимизация состояния проявлялась в появлении способности длительно концентрировать внимание на решении академических задач, улучшении планирования деятельности, большей адекватности в выражении собственного недовольства, снижении гиперактивности и ряде других признаков. У 12 пациентов значительно улучшилась успеваемость.

Во второй группе ремиссия синдрома дефицита внимания и гиперактивности была достигнута у шести учеников, частичная ремиссия — у четырех, отсутствовал эффект лечения у двух больных. Ремиссия расстройства поведения в виде вызывающей оппозиции была достигнута у шести человек (из них трем проводилась семейная и индивидуальная психотерапия). У остальных двух пациентов из этой группы после коррекционного курса сохранялись признаки расстройства поведения в виде вызывающей оппозиции. Семейная психотерапия в этих случаях не проводилась. У четырех пациентов этой группы отмечалась положительная динамика успеваемости.

Таким образом, клиническая эффективность технологии ЭЭГ-коррекции СДВГ (без выраженной органической патологии мозга) составила 77%.

Наиболее тяжелой в плане коррекции оказалась третья группа пациентов. Положительный «клиниче-

ский» эффект (ремиссия СДВГ) был достигнут у шести пациентов (из них два без расстройств поведения).

Ремиссия синдрома дефицита внимания (дети первой и второй групп) получена в 40 случаях. У пациентов с расстройством поведения в виде вызывающей оппозиции (вторая и третья группы) ремиссия достигалась в среднем в 16 случаях.

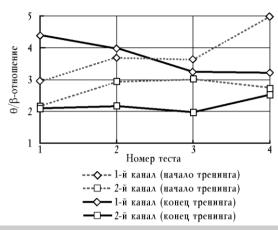


Рис. 1. Отношение θ/β в начале и в конце тренинга (ученица 3.Л.): 1-й канал — теменное отведение, 2-й канал — затылочное; номер теста: 1 — глаза закрыты; 2 — глаза открыты; 3 — вычисление порога θ/β 50; 4 — θ/β -отношение — «Шары». Положительная динамика по каждому из отведений

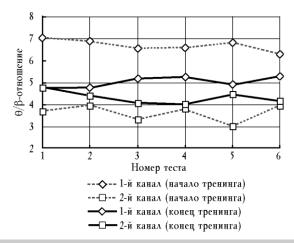


Рис. 2. Отношение θ/β в начале и в конце тренинга (ученица П.А.): 1-й канал — теменное отведение, 2-й канал — затылочное; номер теста: 1 — глаза закрыты; 2 — глаза открыты; 3 — «Счет»; 4 — «10 слов»; 5 — вычисление порога θ/β 50; 6 — θ/β -отношение — «Шары». Положительная динамика по теменному отведению (по которому идет тренинг)

Электроэнцефалографические результаты тренинга. У 32 пациентов первой группы (СДВГ без сопутствующей патологии ЦНС и выраженных поведенческих расстройств) было выполнено 576 сеансов ЭЭГ-биоуправления. Среднее число сеансов на одного пациента – 18.

У 12 пациентов второй группы (СДВГ в сочетании с расстройством поведения в виде вызывающей оппо-

зиции) было выполнено 216 сеансов тренинга, среднее количество на одного пациента – 18.

У восьми детей третьей группы – сочетание СДВГ и органической патологии головного мозга без сопутствующих расстройств поведения или с наличием таковых – выполнено 152 сеанса. Среднее количество сеансов на одного пациента составило 19. Четверо пациентов этой группы находились на лечении повторно.

Анализ данных, полученных при помощи программно-аппаратного комплекса «Бослаб», позволяет сделать вывод о том, что коррекционный курс ЭЭГ-биоуправления, основанный на механизме адаптивной обратной связи, позволяет оптимизировать соотношение основных ритмов электроэнцефалограммы в направлении снижения фронтальной медленно-волновой θ -активности.

В группе детей без выраженной органической патологии ЦНС в результате курса тренинга зарегистрировано достоверное снижение мощности в θ -диапазоне (p < 0,001), прирост мощности в θ -диапазоне был статистически недостоверным. У пациентов с выраженной патологией ЦНС мощность в θ -диапазоне также достоверно снижалась (p < 0,001). Динамика θ -диапазона в этой группе была полиморфной, что было связано с тем, что у трех школьников до начала лечения по данным картирования отмечалась патологическая θ -активность (как признак органической патологии головного мозга).

Динамика результатов «измерения» внимания

Как было указано выше, измерение внимания пациентов проводилось при помощи проб Шульте: корреляционный анализ подтвердил тезис о том, что большим значениям θ/β -соотношения и низкой эффективности концентрации внимания по данным пробы Шульте перед началом лечения соответствовали низкие уровни мощности в β -диапазоне исходной электроэнцефалограммы, наиболее отчетливо в группе успешного тренинга, которую составили 35 пациентов, из них 23 – из группы СДВ и 12 – из группы ОРГ; картирование было проведено 35 пациентам.

Обнаружена сильная положительная корреляционная связь между θ/β -соотношением по данным кар-

тирования и временем, затрачиваемым в среднем на одну таблицу Шульте.

Среди всей группы обследованных удалось выделить 50 человек, у которых был проведен весь комплекс запланированных исследований, включающий наряду с анкетированием и психологической диагностикой многоканальную обзорную ЭЭГ (как до, так и после проведения сеансов игрового биоуправления с использованием ПАК «Бослаб»). Были проанализированы значения отношения θ/β и четыре α -сегментных характеристик ЭЭГ (амплитуда A, длительность T, амплитудная вариативность CV и крутизна межсегментных переходов S). Качество тренинга наряду с оценками психолога можно было определить по динамике изменений отношения θ/β , т.е. уменьшению конечного значения этого коэффициента, являющегося следствием когнитивного управления ЭЭГ за счет увеличения мощности β-ритма и снижения мощности θ-диапазона, а также изменению количества признаков СДВГ до и после тренинга, по которым сформировано две группы: с лучшими результатами (значительное снижение числа признаков СДВГ - 20 человек) и менее выраженными (уменьшение не более чем на пять признаков СДВГ – 30 человек). Динамика этих характеристик представлена в табл. 1.

Изменения до и после тренинга по каждому признаку СДВГ были оценены по тесту Мак-Неймара и приведены в табл. 2.

Как видно из табл. 2, число признаков СДВГ, кроме последнего, статистически значимо изменилось в процессе тренинга, что связано с динамикой детей с соответствующим маркером СДВГ (до тренинга этот синдром наблюдался, после – отсутствовал).

Различие между группами отмечено в проценте изменения (до и после тренинга) двух сегментных характеристик: крутизне (p=0,001) и вариативности (p=0,004), причем для первой группы отмечено их падение (S от 149,1 до 138,6; CV от 21,3 до 20,6), а для второй – рост (S от 144,3 до 153,8; CV от 20,8 до 21,7). Это свойство разнонаправленного изменения можно в дальнейшем использовать как одно из прогностических свойств качества планируемого медиатренинга.

Таблица 1

	Bce (50	человек)	Группа 1 (20 человек)		Группа 2 (30 человек)	
Параметр ЭЭГ (игра «Шары»)	В начале	В конце	В начале	В конце	В начале	В конце
	тренинга	тренинга	тренинга	тренинга	тренинга	тренинга
Крутизна межсегментных переходов S	$146,2 \pm 1,7$	$147,9 \pm 3,1$	$149,1 \pm 3,0$	$138,6 \pm 2,7*$	$144,3 \pm 2,0$	$153.8 \pm 4.5^{\#}$
Амплитуда сегмента <i>А</i>	$16,9 \pm 0,9$	$17,3 \pm 0,6$	$17,6 \pm 1,5$	$17,3 \pm 1,1$	$16,5 \pm 1,0$	$17,2 \pm 0,8$

Амплитудная вариативность CV	$21,0 \pm 0,2$	$21,3 \pm 0,3$	$21,3 \pm 0,3$	$20,6 \pm 0,2**$	20.8 ± 0.2	$21,7 \pm 0,4^{\#}$
Длительность сегмента T	$255,8 \pm 1,6$	$257,9 \pm 2,0$	$254,2 \pm 3,3$	$252,7 \pm 3,4$	$256,7 \pm 1,7$	$261,3 \pm 2,2$
θ/β -отношение (теменное отведение)	$5,1 \pm 0,3$	$4,6 \pm 0,2$	$5,0 \pm 0,4$	$4,5 \pm 0,3$	$5,2 \pm 0,4$	$4,7 \pm 0,3$

 Π р и м е ч а н и е. Парные сравнения (начало – конец тренинга): * – p = 0,001, ** – p = 0,02, # – p = 0,05.

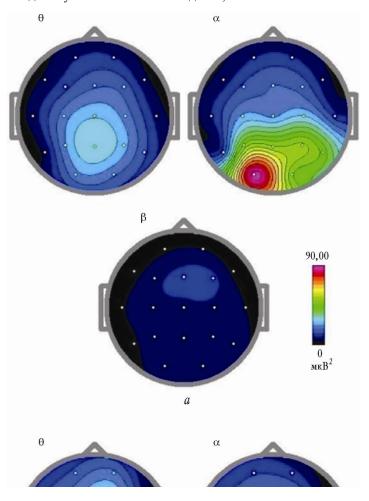
Таблица 2

Признак СДВГ	Число детей, имеющих дан- ный признак (остался после тренинга/отсутствует)	<i>p</i> (тест Мак- Неймара)
Невнимательность		
Часто проявляющаяся неспособность внимательно следить за деталями, совершает беспечные		
ошибки в школьной программе, работе или другом виде деятельности	35 (21/14)	< 0,001
Часто не удается поддерживать внимание на занятиях или в игровом режиме	25 (13/12)	< 0,001
Часто заметно, что ребенок не слушает, что ему говорят	40 (17/23)	< 0,001
Не способен следовать инструкциям или завершать школьную работу, повседневные дела и обязан-		
ности на рабочем месте (не из-за оппозиционного поведения или неспособности понять инструкции)	22 (1/21)	<0,001
Часто нарушена организация заданий и деятельности	16 (3/13)	<0,001
Избегает или очень не любит заданий, требующих постоянных умственных усилий	32 (15/17)	< 0,001
Теряет вещи, необходимые для выполнения определенных заданий, таких как школьные атрибуты:		
карандаши, книги, игрушки или инструменты	17 (3/14)	< 0,001
Отвлекается на внешние стимулы	47 (36/11)	0,001
Забывчив в повседневной деятельности	35 (22/13)	0,007
Гиперактивность		
Беспокойно двигает руками или ерзает на месте	30 (11/19)	< 0,001
Покидает свое место в классной комнате или в другой ситуации, когда требуется сохранять непод-		
вижность	19 (3/16)	< 0,001
Часто начинает бегать или куда-то карабкаться, когда это неуместно (в подростковом или зрелом		
возрасте может присутствовать лишь чувство беспокойства)	13 (2/11)	0,001
Неадекватно шумен в играх или испытывает затруднения при тихом проведении досуга	27 (11/16)	< 0,001
Обнаруживается стойкий характер чрезмерной моторной активности, на которую существенно		
не влияют социальные ситуации и требования	12 (10/2)	0,039
Импульсивность		
Выкрикивает ответы до того, как завершены вопросы	35 (15/20)	< 0,001
Не способен ждать в очередях, дожидаться своей очереди в играх или групповых ситуациях	36 (8/28)	< 0,001
Прерывает других или вмешивается в игры иных людей	32 (7/25)	< 0,001
Слишком много разговаривает без адекватной реакции на социальные ограничения	41 (39/2)	1,000

Примеры

Ученица 3.Л., 10 лет 2 мес (3-й класс). Сидеть на месте не может, дисциплину не нарушает, но ничего не успевает делать. Очень медлительна, внимание неустойчиво, рассеянна, теряет вещи, не реагирует, когда к ней обращаются с просьбой, не умеет выстраивать отношения с одноклассниками.

Проведено 13 сеансов β -игрового биоуправления. Динамика положительная по значениям θ/β -коэффициента (см. рис. 1): стала более ответственно относиться к вещам, уроки делает пока в том же темпе, однако пытается ввести временные ограничения, что получается не всегда. В учебе произошли значительные сдвиги: более активна, увеличилась скорость чтения, взаимоотношения с одноклассниками улучшились.


Данные по психологическому обследованию с использованием методик, указанных в материалах и методах исследования, проведенному до начала и после окончания тренинга, приводятся в табл. 3. Многоканальное картирование спектральной мощности ЭЭГ (до и после тренинга) для диапазонов θ , α и β , а также для отношения спектральных мощностей θ/β приводится на рис. 3, 4 соответственно. Курсовая динамика средних значений отношения θ/β (для игры «Шары») приведена на рис. 5.

Ученица П.А., 8 лет 3 мес (1-й класс). Со слов классного руководителя, ребенок спокойный, но сидеть на месте не может. На уроках дисциплину не нарушает, но ничего не успевает делать. Очень медлительна. Внимание неустойчиво. Со слов мамы: рассеяна, теряет вещи, не обращает внимания, когда к ней обращаются с просьбой. Не умеет выстраивать отношения с

одноклассниками. Проведено 12 сеансов β -игрового биоуправления. Динамика по показателям θ/β -отношения в целом положительная (см. рис. 2). Со слов мамы, стала более ответственно относиться к вещам. Уроки делает пока в том же темпе, пытается ввести временные ограничения. Получается, но не всегда. В учебе значительные сдвиги, стала более ак-

тивна на уроках. Улучшилась скорость чтения. Взаимоотношения в классе стали лучше.

В табл. 4 сведены данные по психологическому обследованию, проведенному до начала и после окончания тренинга. Многоканальное картирование спектральной мощности ЭЭГ (до и после тренинга) для диапазонов θ ,

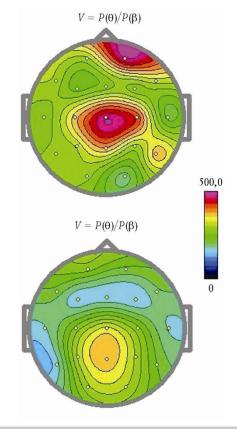


Рис. 4. Многоканальное картирование (ученица 3.Л.). Отношение мощностей в диапазонах θ и β : a — до тренинга; δ — после тренинга. Отмечается существенное уменьшение отношения θ/β до и после тренинга

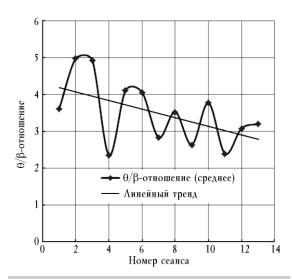


Рис. 3. Многоканальное картирование (ученица 3.Л.). Спектральная мощность ЭЭГ в разных (θ , α и β) частотных диапазонах: a – до тренинга; δ – после тренинга. Отмечаются незначительные изменения как в θ , так и в β -диапазонах

Рис. 5. Курсовая динамика отношения θ/β по средним значениям за один сеанс (игра «Шары», ученица З.Л.). Заметен существенный убывающий линейный тренд в курсовой динамике показателя

Таблица 3

	Таблицы Шульте				Равен			«10 слов»			
Период	(внимание)					(инт	еллект)	(памя	ть)	Чтение, коли-	
исследова-	Среднее	Количест-	Истощае-	Устойчивость	Люшер*	Балл			Количе-	Количе-	чество слов
кин	время,	во оши-	мость	внимания		(max 60	ИВ	Уровень	ство повто-	ство	в минуту
	мин:с	бок, шт.	t5-t1, c	внимания		баллов			рений	ошибок	
На начало	1:03	0	-28	Признаки	CO = 10	29	12	III(-)	11	7	144
	(в пределах			колебания	BK = 1,63			ккнжин)	(ниже		(норма)
	возрастной			средней сте-				граница	средней		
	нормы)			пени				среднего)	возрастной		
									нормы)		
После	1:02	1	+12	Признаки	CO = 4	Не прове-	_	_	3	1	144
окончания	(в пределах			колебания	BK = 1,67	рялось			(средняя		(норма)
	возрастной			средней					возрастная		
	нормы)			степени					норма)		

^{*} Уровень непродуктивной нервно-психической напряженности соответствовал низким значениям (суммарное отклонение от аутогенной нормы от 4 до 10 баллов); вегетативный коэффициент энергетического баланса на уровне оптимальной работоспособности или избыточного возбуждения (суетливости, лихорадочности). Порядок выбора цветов характеризует эмоциональное состояние стресса, «вызванного эмоциональной неудовлетворенностью; существующими взаимоотношениями, что воспринимает как угнетающую зависимость; в конечном итоге все это обусловливает повышенную чувствительность, суетливость, нарушает способность к сосредоточению».

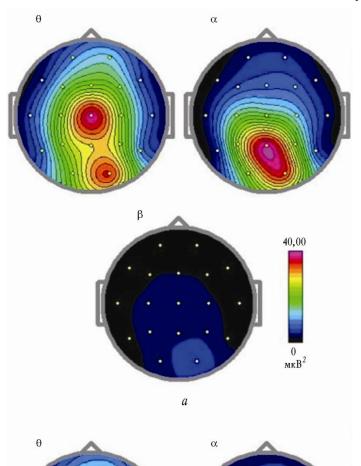
Таблица 4

		Таблицы Шульте				Равен			«10 слов»		
Период	(внимание) (интеллект)		еллект)	(памя	ть)	Чтение, коли-					
исследо-	Среднее	Количест-	Истощае-	Устойчивость	Люшер*	Балл			Количе-	Количе-	чество слов
вания	время,	во оши-	мость			(max 60	ИВ	Уровень	ство повто-	ство	в минуту
	мин:с	бок, шт.	t5-t1, c	внимания		баллов)			рений	ошибок	
На начало	1:02	0	-18	Незначитель-	CO = 10	27	2	III (+)	5	1	53
	(в пределах			ные колеба-	BK = 1,50			средний	Нарушение		(норма)
	возрастной			ния, врабаты-					внимания		

	нормы)			ваемость							
После	0:44	0	+6	Незначитель-	CO = 10	454	2	I (+)	3	1	54
окончания	(возрастная			ные колеба-	BK = 1,88			(очень высокий,	(средняя		
	норма)			ния, врабаты-				превышает	возрастная		
				ваемость				1-й уровень	норма)		
								(на 11,6 года))			

^{*} Суммарное отклонение от аутогенной нормы – 10 баллов, что соответствует низким значениям непродуктивной нервно-психической напряженности. Вегетативный коэффициент энергетического баланса – избыточное возбуждение (суетливость, лихорадочность).

 α и β , а также для отношения спектральных мощностей θ/β приводится на рис. 6, 7 соответственно. Курсовая динамика средних значений отношения θ/β (для игры «Шары») приведена на рис. 8.


Заключение

Проведение в школе нейротерапевтических сессий, сочетающих пред- и постсессионную обзорную электроэнцефалографию с игровым тренингом, основанным на θ -понижающем и β -стимулирующем биоуправлении, полностью оправдало себя. Школа, являющаяся основной средой жизнедеятельности учеников, позволяет наблюдать динамику латентных форм СДВГ и организовывать многолетний нейротерапевтический мониторинг. ЭЭГ-тренинг, основанный на а) продолжительности ремиссии; б) динамике α -сегментных характеристик; в) θ / β -коэффициенте, позволяет добиться высокой эффективности почти в 80% наблюдений.

Преимущества школьного мониторинга очевидны: ребенок постоянно в течение многих лет наблюдается профессиональным психотерапевтом и психофизиологом, что в итоге позволяет составить по завершении курса коррекции некий психофизиологический «портрет» ученика. В дальнейшем этот портрет может (должен) эффективно использоваться в рамках школьных правил.

По-видимому, психофизиологический мониторинг в условиях школы применительно к СДВГ должен быть унифицирован и стать постоянно присутствующим на протяжении всей школьной жизни.

Тонкие технологии ЭЭГ-слежения — α -сегментный анализ и θ/β -мониторинг — свидетельствуют об эффективности нейротерапии, включающей нейробиоуправление и компьютерную количественную электроэнцефалографию.

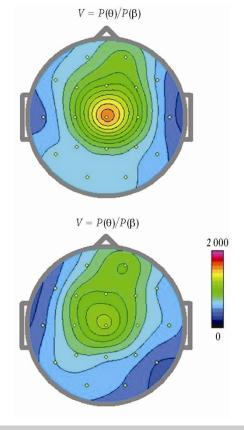


Рис. 7. Многоканальное картирование (ученица П.А.). Отношение мощностей в диапазонах θ и β : a — до тренинга; δ — после тренинга. Отмечается существенное уменьшение

отношения θ/β до и после тренинга

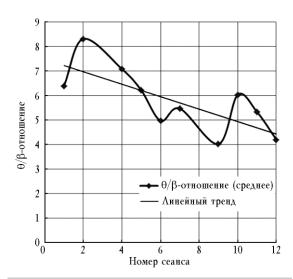


Рис. 6. Многоканальное картирование (ученица П.А.). Спектральная мощность ЭЭГ в разных (θ , α и β) частотных диапазонах: a – до тренинга; δ – после тренинга. Отмечается заметное уменьшение спектральной мощности в θ -диапазоне при ее незначительных изменениях в β -диапазоне

Литература

- 1. Джафарова О.А., Донская О.Г., Зубков А.А., Штарк М.Б. Игровое биоуправление как технология профилактики стрессзависимых состояний // Биоуправление-4: теория и практика / ред. М. Шварц, М. Штарк. Новосибирск: Ин-т молекулярной биологии и биофизики СО РАМН, 2002. С. 86–96.
- 2. Каплан А.Я., Борисов С.В., Шишкин С.Л., Ермолаев В.А. Анализ сегментной структуры альфа-активности ЭЭГ человека // Рос. физиолог. журн. им. И.М. Сеченова.

Рис. 8. Курсовая динамика отношения θ/β по средним значениям за один сеанс (игра «Шары», ученица П.А.). Заметен существенный убывающий линейный тренд в курсовой дина-

мике показателя

2002. T. 88, № 4. C. 432—442.

- Любар Д. Биоуправление, дефицит внимания и гиперактивность (диагностика, клиника, эффективность лечения) // Биоуправление-3: теория и практика. Новосибирск, 1998. С. 143–160.
- 4. Столлер И.А., Сухоленцева М.В., Ткаченко Н.Н., Веревкин Е.Г., Штарк М.Б., Ярош С.В. Альфа-активность электроэнцефалограммы при нейротерапии синдрома дефицита внимания средствами игрового нейробиоуправления // Бюл. сиб. медицины. 2010. Т. 9, № 2. С. 24–34.

Поступила в редакцию 22.11.2012 г. Утверждена к печати 07.12.2012 г.

Столлер Ирина Александровна – тренер нейробиоуправления психолого-физиологического центра СДВГ на базе гимназии № 16 (г. Новосибирск).

Веревкин Евгений Георгиевич (≥) – канд. биол. наук, руководитель лаборатории математического моделирования биомедицинских систем, НИИ молекулярной биологии и биофизики СО РАМН (г. Новосибирск).

Сухоленцева Марьяна Владимировна – врач-психиатр, аспирант кафедры психиатрии, наркологии и психотерапии НГМУ (г. Новосибирск).

⊠ Веревкин Евгений Георгиевич, тел. 8 (383) 335-97-56; e-mail: ewer@ngs.ru

GAME BIOFEEDBACK TECHNOLOGY IN ATTENTION DEFICIT/HYPERACTIVITY DISORDER

Stoller I.A.¹, Verevkin Ye.G.², Sukholentseva M.V.²

¹ Psychological-physiological Center of ADHD based on the Gymnasium № 16, Novosibirsk, Russian Federation

² Institute Molecular Biology and Biophysics Siberian Branch of the Russian Academy of Medical Science, Novosibirsk,

Russian Federation

³ Novosibirsk State Medical University, Novosibirsk, Russian Federation

ABSTRACT

We continue the study of students with attention deficit hyperactivity disorder when using betastimulating game neurofeedback. The dynamics of segmental characteristics of the alpha rhythm and θ/β ratio for different groups of successful training. Evaluate the effectiveness of training in terms of the number of ADHD symptoms (at the beginning and end of the training).

KEY WORDS: children, ADHD syndrome, theta-beta coefficient, beta-stimulating biofeedback, alphasegment analysis, game biofeedback.

Bulletin of Siberian Medicine, 2013, vol. 12, no. 2, pp. 166-174

References

- Jafarova O.A., Donskaya O.G., Zubkov A.A., Shtark M.B. Biofeedback-4: Theory and practice. Novosibirsk, 2002. Pp. 86–96 (in Russian).
- Kaplan A.Ya., Borisov S.V., Shishkin S.L., Yermolayev V.A. Russian Physiological Journal named after I.M. Sechenov, 2002, vol. 88, no. 4, pp. 432–442 (in Russian).
- 3. Lyubar D. Biofeedback, attention deficit and hyperactivity (diagnostics, clinic, treatment efficiency). *Biofeedback-3: theory and practice*. Novosibirsk, 1998. Pp. 143–160 (in Russian).
- 4. Stoller I.A., Sukholentseva M.V., Tkachenko N.N., Veryovkin Ye.G., Shtark M.B., Yarosh S.V. *Bulletin of Siberian Medicine*, 2010, vol. 9, no. 2, pp. 24–34 (in Russian).

Stoller Irina A., Psychological-physiological Center of ADHD based on the Gymnasium № 16, Novosibirsk, Russian Federation.

Verevkin Yevgeny G. (⋈), Laboratory of Mathematical Modeling of Biomedical Systems, Institute of Molecular Biology and Biophysics, Novosibirsk, Russian Federation.

Sukholentseva Mariana V., Department of Psychiatry, Addiction and Psychotherapy NGMU, Novosibirsk, Russian Federation.

Verevkin Yevgeny G., Ph. +7 (383) 335-97-56; e-mail: ewer@ngs.ru