Отформатировано: русский (Россия)

Трубачева Оксана Александровна

РОЛЬ АКТИВНЫХ ФОРМ КИСЛОРОДА В РЕГУЛЯЦИИ ${\rm Ca}^{2^+}$ -АКТИВИРУЕМОЙ КАЛИЕВОЙ ПРОНИЦАЕМОСТИ ЭРИТРОЦИТОВ ЧЕЛОВЕКА

03.03.01 - физиология

АВТОРЕФЕРАТ

диссертации на соискание ученой степени

Примечание [D1]:

кандидата медицинских наук

Томск – 2011

Работа выполнена в Государственном образовательном учреждении высшего профессионального образования "Сибирский государственный медицинский университет Министерства здравоохранения и социального развития Российской Федерации" и Учреждении Российской академии медицинских наук Научно-исследовательский институт кардиологии Сибирского отделения РАМН

Научный руководитель:	
доктор биологических наук, профессор	Петрова Ирина Викторовна
Официальные оппоненты:	
доктор медицинских наук, профессор	Барбараш Нина Алексеевна
кандидат медицинских наук	Коноваленко Юлия Александровна
	ВПО "Красноярский государственный профессора В.Ф. Войно-Ясенецкого
Защита состоится "" диссертационного совета Д 208 Минздравсоцразвития России (634050 г	2011 г. в часов на заседании .096.01 при ГОУ ВПО СибГМУ г. Томск, Московский тракт, 2)
С диссертацией можно ознакоми ГОУ ВПО СибГМУ Минздравсоцразви	иться в научно-медицинской библиотеке тия России
Автореферат разослан ""_	2011r.
Ученый секретарь диссертационного совета	Т.С. Федорова

Актуальность проблемы

К настоящему времени накоплен огромный объем сведений о роли активных форм кислорода (АФК) в жизнедеятельности клетки, к которым наряду с супероксид-анионом, перекисью водорода относят и оксид азота. Хорошо изучено повреждающее действие АФК на клеточные мембраны. Однако в последнее время все чаще появляются работы, в которых АФК, в том числе супероксид-анион, перекись водорода (H₂O₂)И оксид рассматриваются в качестве регуляторов внутриклеточных процессов. Активные формы кислорода либо сами выступают в роли вторичных посредников [Das D.K., Maulik N., 1994; Bromme H.J., Holz J., 1996; Дубинина Е.Е., 2006; Быстрова М.Ф., Буданова Е.Н., 2007], либо модулируют действие известных регуляторных каскадов клетки [Dröge W., 2002]. Один из регуляторных путей связан с влиянием АФК на ионтранспортные системы клеток [Adragna N.C. et al., 2000; Gutterman D.D. et al., 2005].

Мембрана эритроцитов содержит только один тип каналов, а именно Ca^{2+} активируемые K^+ -каналы ($K^+(Ca^{2+})$ -каналы) средней проводимости, или Gardos-каналы. В связи с этим красные клетки крови служат естественной моделью для изучения каналов этого типа. Кроме того, данное обстоятельство позволяет проводить исследования на суспензии интактных клеток.

Со времени своего обнаружения $K^+(Ca^{2+})$ -каналы эритроцитов достаточно интенсивно изучаются, но только недавно была установлена их физиологическая роль. $K^+(Ca^{2+})$ -каналы вносят определенный вклад в эриптоз [Lang F. et al., 2006; Foller M. et al., 2008], изменение объема клеток [Begenisich T. et al., 2004]. Не исключено их участие в деформируемости клеток: Ca^{2+} -индуцируемое снижение деформируемости эритроцитов устраняется при выравнивании градиента ионов калия [Dodson R.A. et al., 1987].

Регуляция К⁺(Ca²⁺)-каналов эритроцитов осуществляется несколькими путями. Один из них связан с вторичными посредниками, эффект которых реализуется при воздействии активаторов или ингибиторов протеинкиназ А или С [Орлов С.Н. с соавт., 1992; Петрова И.В. с соавт., 1997; Pellegrino M, Pellegrini M., 1998; Del Carlo B, et al., 2003].

Другой путь регуляции осуществляется посредством белков цитоскелета эритроцитов без участия протеинкиназ [Петрова И.В. с соавт., 2002; Ситожевский А.В. с соавт., 2004].

Наконец, мембрана эритроцитов содержит некоторые компоненты электронно-транспортной цепи, обычно присутствующие на внутренней мембране митохондрий (НАДН-дегидрогеназа, цитохром с) [Alvarez J. et al., 1984; Kennett E.C., Kuchell P.W., 2003; Matteucci E., Giampietro O., 2007], которые могут включаться в регуляцию $K^+(Ca^{2+})$ -каналов эритроцитов [Alvarez J. et al., 1984].

В эритроцитах, вследствие циклов окси- и дезоксигенации гемоглобина, постоянно происходит образование $A\Phi K$, которые влияют на регуляторные пути этих клеток [Barvitenko N.N. et al., 2005; Matteucci F., Giampietro O., 2007]. Кроме того, в процессе своего функционирования эритроциты подвергаются действию $A\Phi K$, продуцируемых другими клетками: эндотелиоцитами, иммунокомпетентными клетками во время так называемого «кислородного

взрыва» [Такаhashi R. et al., 1991]. Известно, что АФК, в частности, оксид азота, оказывают влияние на эриптоз [Nicolay J. P. et al, 2008] и деформируемость эритроцитов [Вог-Кисикаtay M. et al., 2003].

Эритроциты являются универсальной моделью для оценки степени и глубины повреждения мембран при патологическом процессе [Черницкий Е.А., Воробей А.В., 1987]. С другой стороны, нарушения структурно-функционального состояния мембраны эритроцитов могут рассматриваться как одно из звеньев патогенеза ряда заболеваний.

При патологических процессах, сопровождающихся окислительным повреждением эритроцитов, наблюдаются типовые изменения со стороны клеток красной крови [Новицкий В.В. с соавт., 2004]: повышение внутриклеточной концентрации ионов кальция, снижение их деформируемости и сокращение продолжительности жизни [McMillan D.E. et al., 1978; Fujita J. et al., 1999; Miossec P. et al., 1999]. Нельзя исключить, что в условиях повышенной продукции $A\Phi K$ изменяется как функционирование самих $K^+(Ca^{2+})$ -каналов, так и внутриклеточных сигнальных систем, участвующих в их регуляции.

Однако данные об участии $A\Phi K$ в регуляции Ca^{2^+} -активируемых калиевых каналов эритроцитов человека немногочисленны.

В связи с вышесказанным представляется весьма актуальным изучение роли активных форм кислорода в регуляции $K^+(Ca^{2+})$ -каналов эритроцитов как в норме, так и при патологическом процессе, сопровождающимся окислительным повреждением эритроцитов.

Цель настоящего исследования — изучить вклад активных форм кислорода в регуляцию Ca^{2^+} -зависимой K^+ -проницаемости мембраны эритроцитов здоровых доноров и больных артериальной гипертензией в сочетании с сахарным диабетом 2 типа.

Для достижения указанной цели решались следующие задачи:

- 1) исследовать влияние супероксид-аниона, перекиси водорода и оксида азота на Ca^{2^+} -зависимую K^+ -проницаемость мембраны эритроцитов здоровых доноров;
- 2) изучить влияние перекиси водорода и агониста α_1 -адренэргических рецепторов фенилэфрина на Ca^{2^+} -зависимую K^+ -проницаемость мембраны эритроцитов здоровых доноров;
- 3) исследовать влияние повышенной Ca²⁺-зависимой K⁺-проницаемости на деформируемость и изменение объема эритроцитов здоровых доноров;
- 4) изучить регуляцию активными формами кислорода Ca^{2+} -зависимой K^+ -проницаемости мембраны эритроцитов больных артериальной гипертензией в сочетании с сахарным диабетом 2 типа.

Положения, выносимые на защиту

- 1. Перекись водорода снижает, а оксид азота увеличивает Ca^{2^+} -зависимую K^+ -проницаемость мембраны эритроцитов здоровых доноров. Супероксид-анион при внеклеточной аппликации не изменяет Ca^{2^+} -зависимую K^+ -проницаемость мембраны эритроцитов здоровых доноров, но снижает скорость ее развития.
- 2. Перекись водорода потенцирует активирующее действие агониста α_1 -адренэргических рецепторов фенилэфрина на Ca^{2+} -зависимую K^+ -

- проницаемость мембраны эритроцитов как здоровых доноров, так и больных артериальной гипертензией в сочетании с сахарным диабетом 2 типа.
- 3. Повышение Ca²⁺-зависимой K⁺-проницаемости приводит к снижению деформируемости эритроцитов здоровых доноров. Одной из причин снижения деформируемости является сжатие клеток.
- 4. В эритроцитах больных артериальной гипертензией в сочетании с сахарным диабетом 2 типа перекись водорода, в отличие от здоровых доноров, существенно увеличивает Ca^{2+} -зависимую K^{+} -проницаемость мембраны.

Научная новизна работы

Впервые показано, что супероксид-анион, продуцируемый внеклеточным источником (система ксантин – ксантиноксидаза), не изменяет, а перекись водорода уменьшает Ca^{2+} -зависимую K^+ -проницаемость мембраны эритроцитов здоровых доноров. Впервые установлено, что увеличение внутриклеточной концентрации перекиси водорода потенцирует активирующее действие фенилэфрина на Ca^{2+} -активируемые K^+ -каналы эритроцитов здоровых доноров.

Установлено, что стимуляция внутриклеточной продукции оксида азота с помощью L-аргинина приводит к повышению ${\rm Ca}^{2^+}$ -зависимой ${\rm K}^+$ -проницаемости мембраны эритроцитов здоровых доноров. Сходный эффект оказывает и увеличение внутриклеточной концентрации цГМ Φ .

Показано, что активация Ca^{2^+} -зависимой K^+ -проницаемости мембраны эритроцитов здоровых доноров снижает их деформируемость, что сопровождается уменьшением объема клеток.

Впервые проведено исследование влияния активных форм кислорода на Ca^{2^+} -активируемые K^+ -каналы эритроцитов больных артериальной гипертензией в сочетании с сахарным диабетом 2 типа. Установлено, что у данной категории больных в отличие от здоровых доноров перекись водорода увеличивает Ca^{2^+} -зависимую K^+ -проницаемость мембраны эритроцитов.

Научно-практическая значимость работы

Данные, полученные в настоящем исследовании, носят фундаментальный характер и расширяют существующие представления о регуляции и функциональной значимости Ca^{2+} -активируемых K^+ -каналов эритроцитов. Результаты работы дополняют представления о механизмах регуляции ионной проницаемости мембраны клеток активными формами кислорода. Сведения о снижении деформируемости эритроцитов вследствие увеличения Ca^{2+} -зависимой K^+ -проницаемости полезны для разработки молекулярных технологий управления деформируемостью красных клеток крови. Результаты работы, связанные с модулированием активными формами кислорода Ca^{2+} -активируемых K^+ -каналов эритроцитов при артериальной гипертензии в сочетании с сахарным диабетом 2 типа могут быть использованы для фармакологической коррекции нарушений структурно-метаболического статуса эритроцитов при патологиях, объединенных развитием окислительного стресса.

Основные положения работы используются в курсах лекций и практических занятиях, проводимых на кафедрах биофизики и функциональной диагностики, нормальной физиологии Сибирского государственного медицинского

университета, на кафедре физиологии человека и животных Томского государственного университета. Методические приемы и полученные данные используются в научных исследованиях, выполняемых на кафедрах биофизики и функциональной диагностики, нормальной физиологии Сибирского государственного университета. Областями применения медицинского полученных данных являются физиология, патологическая физиология, биофизика.

Апробация работы

Основные положения диссертационной работы доложены на всероссийских и международных научных форумах: XI и X Международном конгрессе молодых ученых и специалистов "Наука о человеке" (Томск, 2008-2009), Всероссийской научно-практической конференции молодых ученых и специалистов "Актуальные проблемы современной эндокринологии" (Москва, 2008), VI Сибирском физиологическом съезде (Барнаул, 2008), XVI Международной конференции студентов, аспирантов и молодых ученых "Ломоносов" (Москва, 2009), XXI Съезде Физиологического общества им. И.П.Павлова (Калуга, 2010), конференции «Современная кардиология: Эра инноваций» (Томск, 2010).

Исследование выполнено в рамках реализации ФЦП «Научные и научно-педагогические кадры инновационной России» на 2009-2013 годы ГК№ П445, ГК № 02.740.11.5031 и ГК № 14.740.11.0932.

Публикации

По теме диссертации опубликовано 17 работ, из которых 2 — в рецензируемых журналах, рекомендованных ВАК Министерства образования и науки $P\Phi$.

Объем и структура диссертации

Диссертация изложена на 123 страницах машинописного текста и состоит из введения, обзора литературы, главы "Материалы и методы", главы собственных результатов, их обсуждения и заключения. Библиография включает 237 ссылок, в том числе 86 – работы отечественных авторов и 151 – зарубежных. Работа иллюстрирована 37 рисунками и включает 2 таблицы.

Личное участие автора

Основные результаты исследования, вошедшие в диссертацию, получены лично автором. Анализ данных литературы по теме диссертации, статистическая обработка полученных результатов, их научный анализ, обсуждение и написание диссертации выполнены самостоятельно автором.

МАТЕРИАЛ И МЕТОДЫ

Объект исследования: в ходе выполнения данной работы было обследовано 89 человек. В контрольную группу вошел 51 практически здоровый доброволец. Группу больных артериальной гипертензией в сочетании с сахарным диабетом 2 типа составили 38 человек. Группы сопоставимы по полу и возрасту. Клинический диагноз верифицировали с помощью клиниколабораторных методов исследования на базе отделения атеросклероза и

хронической ишемической болезни сердца НИИ кардиологии Сибирского отделения РАМН (руководитель – академик РАМН Р.С. Карпов).

Получение эритроцитов: кровь забиралась из локтевой вены утром натощак в пробирки с гепарином (25 ед/мл крови). После центрифугирования (1000g, 5 мин, 4^{0} C) плазму и клетки белой крови удаляли, а эритроциты дважды промывали 3 частями изоосмотического раствора NaCl (150 мМ), содержащего 5 мМ Na-фосфатный буфер (рН 7,4) при тех же условиях центрифугирования.

Использованные растворы и реактивы:

<u>Использованные растворы</u>: 1. Среда отмывания эритроцитов: 5 мМ Nафосфатный буфер в 150 мМ NaCl. 2. Среда инкубации эритроцитов: 1) изоосмотическая среда 320 мосм: 150 мМ NaCl, 1 мМ KCl, 1 мМ MgCl₂, 10 мМ глюкоза, 2) гиперосмотическая среда 420 мосм: 100 мМ сахароза, 150 мМ NaCl, 1 мМ KCl, 1 мМ MgCl₂, 10 мМ глюкоза, 3) гиперкалиевая среда 10 мМ NaCl, 140 мМ KCl, 1 мМ MgCl₂, 10 мМ глюкоза. 3. Вязкая среда для определения деформируемости: 0,2% высокомолекулярного полиэтиленоксида с молекулярной массой $M=5,8\cdot10^6,2\%$ альбумина и 0,9% натрия хлорида.

<u>Использованные реактивы:</u> NaOH, NaCl, KCl, Na₂HPO₄, NaH₂PO₄, MgCl₂, CaCl₂, глюкоза, C1-CCP (карбонилцианид-m-хлорфенилгидразон), перекись водорода, L-аргинин, нитропруссид натрия, метиленовый синий, 3-изобутил-1-метилксантин, запринаст, L-NMMA, ксантин, ксантиноксидаза, цитохром с, аминотриазол, форбол-миристат-ацетат (PMA – phorbol 12-myristate-13-acetate), L-фенилэфрин гидрохлорид, клотримазол, каталаза, супероксиддисмутаза, альбумин, полиэтиленоксид ("Sigma", США), тритон X100 ("Merck", Германия), дибутирил-цГМФ (Boehringer Mannheim GmbH, Германия)

Растворы A23187, C1-CCP, готовились на этиловом спирте. Конечная концентрация растворителя в среде инкубации эритроцитов не превышала 0,5% и не оказывала влияния на активность Ca^{2^+} -активируемых K^+ -каналов. Раствор ксантина готовился на основе 1 мМ NaOH. Все остальные растворы готовили на основе деионизированной воды.

Метод регистрации мембранного потенциала в суспензии эритроцитов

Для исследования Ca^{2+} -активируемых калиевых каналов был применен метод регистрации мембранного потенциала в суспензии эритроцитов по изменениям рН среды инкубации в присутствии протонофора, основанный на том, что в этих условиях распределение протонов зависит от мембранного потенциала E_m как $E_m = RT/F$ (р $H_i - pH_0$). Здесь р H_i и р H_0 – значения рH цитоплазмы и среды инкубации, соответственно [Орлов С.Н., Петрова И.В. с соавт., 1992]. Эксперименты проводились по следующему плану. Для получения гиперполяризационного ответа к 4,75 мл среды инкубации (среда N), содержащей 150 мM NaCl, 1 мM KCl, 1M MgCl $_2$, 10 мM глюкозы и 10 мM СаС $_2$, добавляли 0,25 мл упакованных эритроцитов. Через 5 мин инкубации при 3 $_2$ 0 и постоянном перемешивании добавляли протонофор Cl-CCP до конечной концентрации 20 м $_2$ 0 м $_3$ 1 и спустя 2 мин добавляли 0,5 м $_3$ 1 к суспензии клеток, содержащей хлорид кальция, приводило к выходу

ионов калия и развитию гиперполяризационного ответа (ГО) мембраны эритроцитов, что находило свое отражение в изменении рН суспензии.

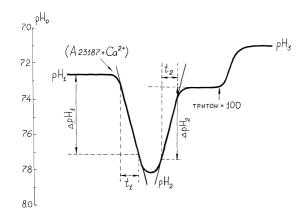


Рис. 1. Типичная кинетика изменения р H_0 в суспензии эритроцитов человека в ответ на добавление 0,5 мкМ A23187 в присутствии 10 мкМ CaCl₂ (представлена как иллюстрация метода расчета стационарных и кинетических параметров).

Защелачивание среды инкубации соответствовало гиперполяризации мембраны, а восстановление рН — возвращению мембранного потенциала (МП) к исходному значению. При анализе полученных данных использовались следующие стационарные и кинетические параметры (рис. 1.). ΔE — амплитуда ΓO , значение мембранного потенциала, соответствующие максимальному уровню гиперполяризации мембраны в ответ на добавление A23187 (мВ); V_1 — скорость защелачивания среды инкубации, отражающая скорость гиперполяризации (мэкв OH^- /мин·л клеток); V_2 — скорость закисления среды инкубации, отражающая скорость восстановления мембранного потенциала (МП) (мэкв H^+ /мин·л клеток). Амплитуда ΓO и скорость его развития (V_1) характеризуют Ca^{2+} -зависимую K^+ -проницаемость, а скорость восстановления мембранного потенциала (V_2) — активность Ca^{2+} -А $T\Phi$ азы [Oрлов C.H., O0, O1, O2, O3, O3, O4, O4, O5, O4, O5, O5, O6, O6, O6, O7, O8, O8, O9, O9,

Спектрофотометрические методы: 1. Определение продукции супероксиданиона. В кювету объемом 1 мл, содержащую среду N, добавляли 10⁻⁴ M ксантина, 10 мU/ мл ксантиноксидазы и 5·10⁻⁵ М цитохрома с. Измерения проводились против кюветы, содержащей среду N и цитохром с в концентрации 5.10-5 М. Продукцию супероксид-аниона оценивали по степени восстановления цитохрома с при 550 HM. Другим продуктом реакции с участием ксантиноксидазы является перекись водорода, что находит свое отражение в снижении содержания супероксид-аниона. Для подтверждения этого к среде N, содержащей ксантин, ксантиноксидазу и цитохром с в указанных концентрациях, добавляли каталазу (454 U/мл), которая катализирует реакцию разложения перекиси водорода. 2. Регистрация изменения объема эритроцитов. Для регистрации изменений объёма эритроцитов в условиях варьирования осмолярности среды инкубации и при активации $K^+(Ca^{2^+})$ -каналов использовался метод, основанный на том, что при изменении объёма эритроцитов изменяется светорассеяние суспензии клеток [Орлов С.Н. с соавт., 1988].

Исследование деформируемости эритроцитов. Исследование проводили методом лазерной эктацитометрии, основанной на явлении дифракции световых лучей при прохождении через тонкий слой жидкости с взвешенными в ней клетками [Белкин А.В. с соавт., 1991; Фирсов Н.И. с соавт., 1983; Evans E. et al., 1986; Bessis M. et al., 1975]. Для количественной оценки рассчитывался индекс деформируемости эритроцитов (ИДЭ): ИДЭ=(L-H)/(L+H), где L — больший диаметр эллипса; Н — меньший диаметр эллипса. Значения ИДЭ, полученные для клеток прединкубированных в среде N без добавления агентов, принимали за 100%.

Статистическая обработка. Анализ данных проводили при помощи программы Statistica 6.0 for Windows фирмы Statsoft. Фактические данные представлены в виде "среднее ± ошибка среднего" (X±m). Для определения распределения полученных данных использовали характера нормальности Колмогорова-Смирнова. Сформированные выборки подчинялись закону нормального распределения, поэтому для проверки статистических гипотез были использованы непараметрические критерии [Гланц С., 1999]. Для проверки гипотезы об однородности двух независимых выборок использовался U-критерий Манна-Уитни (Mann-Whitney U-test). Для проверки однородности парных или зависимых выборок был использован Т-критерий Вилкоксона (Wilcoxon mached pairs test) [Боровиков В. П., 1998]. Различия считали достоверными при уровне значимости р<0,05.

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ И ИХ ОБСУЖДЕНИЕ

<u>Влияние супероксид-аниона и перекиси водорода на Ca^{2+} - зависимую K^{+} -проницаемость мембраны эритроцитов</u>

Одним из наиболее значимых АФК является супероксид-анион (O_2^-) , продукция которого существенно увеличена при ряде патологических состояний: ишемии, гипоксиях, стрессовых ситуациях, эндокринопатиях, опухолевом процессе, различных бактериальных инфекциях и интоксикациях [Владимиров Ю.А., 2000; Карли Ф. с соавт., 1997; Логинов А. С, Матюшин Б. Н., 1996; Шепелев А.П. с соавт., 2000; Чеснокова Н.П.с соавт., 2001].

Для получения супероксид-аниона был применен подход, описанный в работах [Larsson R. et al., 1987; Tsai K. et al., 1997; Kuciel R., Mazurkiewicz A., 2004], где в качестве источника O_2 использовалась ксантиноксидазная реакция.

Как показали предварительные спектрофотометрические исследования в бесклеточной среде, максимальная продукция супероксид-аниона наблюдалась через 10 минут инкубации с 10^{-4} М ксантином, 10 мU/ мл ксантиноксидазой и составила 9 мкМ.

Амплитуда ГО эритроцитов, прединкубированных в присутствии 10^{-4} М ксантина и 10 мU/ мл ксантиноксидазы в течение 10 минут, не отличалась от контрольных значений и составила $97,57\pm0,96$ % (n=7, p>0,05) (рис. 2). В то же время, наблюдалось снижение скорости развития ГО, которая составила $54,38\pm1,39\%$ (n= 7, p<0,02) от контрольных значений. Скорость восстановления МП не отличалась от контрольных значений.

Таким образом, оказалось, что при действии супероксид-аниона снаружи клетки Ca^{2^+} -зависимая K^+ -проницаемость эритроцитов в целом не изменяется, но значительно снижается скорость ее нарастания.

Другим продуктом ксантиноксидазной реакции является H_2O_2 [Kuciel R., Mazurkiewicz A., 2004], образование которой растет при увеличении времени инкубации.

Увеличение времени прединкубации клеток с ксантином и ксантиоксидазой до 20 и 30 минут вызвало достоверное снижение амплитуды и скорости развития ГО эритроцитов (рис. 2).

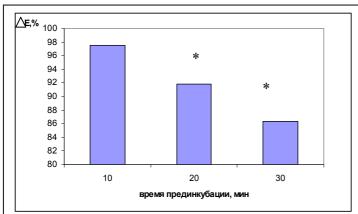


Рис. 2. Зависимость амплитуды гиперполяризационного ответа эритроцитов здоровых доноров от времени инкубации с 10^{-4} М ксантином и $10\,\mathrm{mU/mm}$ ксантиноксидазой.

За 100% приняты значения параметра в отсутствии ксантина и ксантиноксидазы.

Эти параметры составили $91.8\pm0.84\%$ (n=7, p<0.05), $65.52\pm1.39\%$ (n=7, p<0.02) и $86.36\pm0.76\%$ (n=7, p<0.05), 56,39±1,95% (n=7, p < 0.02), соответственно при 20 и 30 минутах инкубации. Скорость восстановления МП эритроцитов, отражающая активность Ca²⁺-насоса мембраны этих клеток, достоверно снижалась до 75,74±2,01% (n=7, р<0.05) только при 30 минутах прединкубации.

Возможно, что снижение параметров ГО при увеличении времени инкубации эритроцитов с ксан-

тином и ксантиноксидазой обусловлено действием Н₂О₂.

В следующей серии экспериментов было изучено влияние перекиси водорода на параметры ГО эритроцитов.

Инкубация эритроцитов с 5.10^{-8} , 10^{-7} и 10^{-6} М перекиси водорода не привела к достоверному изменению параметров ГО. Ранее было показано [Ситожевский А.В. с соавт., 1997; Sitozhevsky A.V. et al., 1997] при низких концентрациях гидропероксидов плазматическая мембрана эритроцитов становится первым барьером, где происходит расщепление экзогенной перекиси. Ключевую роль в декомпозиции экзогенной перекиси играют так называемые Fe-связывающие центры мембраны, представленные гемовым и негемовым железом. Кроме того, эритроцитов характерна ДЛЯ высокая активность каталазы глутатионпероксидазы ферментов, разрушающих перекись водорода, образующуюся в самих эритроцитах или проникающую извне.

Использование более высоких концентраций перекиси водорода оказалось невозможным из-за развивающегося в этих условиях повреждения эритроцитов.

Для увеличения внутриклеточной концентрации H_2O_2 был использован проникающий в клетку ингибитор каталазы аминотриазол. Обработка

эритроцитов аминотриазолом привела к достоверному снижению амплитуды и скорости развития ГО эритроцитов при всех использованных концентрациях перекиси водорода.

Так, параметр ΔE составил $86,82\pm5,69\%$ (n=5, p<0,05), $85,05\pm0,85\%$ (n=5, p<0,05) и $79,02\pm0,91\%$ (n=5, p<0,05), а скорость развития $\Gamma O - 77,08\pm1,09\%$ (n=5, p<0,05), $74,73\pm4,24\%$ (n=5, p<0,05) и $78,51\pm1,55\%$ (n=5, p<0,05) соответственно при $5\cdot10^{-8}$, 10^{-7} и 10^{-6} M H₂O₂.

В то же время оказалось, что скорость восстановления Γ О эритроцитов, обработанных аминотриазолом, достоверно увеличивалась и составила при $5\cdot10^{-8}$, 10^{-7} и 10^{-6} M H_2O_2 соответственно $146,35\pm5,59\%$ (n=5, p<0,05), $151,06\pm3,52\%$ (n=5, p<0,05) и $146,85\pm3,57\%$ (n= 5, p<0,05).

Полученные данные свидетельствуют о снижении Ca^{2^+} -зависимой калиевой проницаемости и, напротив, об увеличении активности Ca^{2^+} -насоса мембраны эритроцитов в условиях повышения внутриклеточной концентрации H_2O_2 .

Поскольку мишенью для перекиси водорода являются SH-группы различных белков [Быстрова М.Ф и Буданова Е.Н., 2007], наиболее вероятно, что эффект H_2O_2 связан с модификацией сульфгидрильных групп белков канала или его регуляторных белков. Подтверждением этому являются ранее полученные в нашей лаборатории данные о снижении амплитуды ΓO под действием блокатора SH-групп N-этилмалеимида [Кремено С.В., 2004].

Ранее в работах [Орлов С.Н. с соавт., 1992; Петрова И.В. с соавт., 1999] было показано, что в формировании Ca^{2+} -индуцированного ГО эритроцитов участвуют не только $K^+(Ca^{2+})$ -каналы, но и Ca^{2+} -АТФаза: увеличение ее активности снижает амплитуду ГО эритроцитов. Не исключено, что увеличение активности Ca^{2+} -АТФазы под действием H_2O_2 приводило к описанному эффекту.

Еще одной причиной снижения амплитуды ΓO может быть ингибирование $A\Phi K$ Na^+/K^+ — $AT\Phi a$ 3ы [Болдырев A.A. с соавт., 1996], что приводит к снижению градиента ионов калия, имеющегося на мембране эритроцита. Последнее, в свою очередь, приводит к уменьшению Ca^{2^+} -зависимой калиевой проницаемости мембраны. Действительно, ранее в нашей лаборатории было обнаружено, что диссипация калиевого градиента эритроцитов вследствие ингибирования Na^+/K^+ — $AT\Phi a$ 3ы оубаином приводила к снижению амплитуды ΓO эритроцитов [Ситожевский A.B. с соавт. 2006].

Таким образом, в настоящем исследовании обнаружено снижение Ca^{2^+} -зависимой K^+ -проницаемости и стимуляция Ca^{2^+} -АТФазы перекисью водорода. Наиболее вероятной причиной обнаруженного эффекта H_2O_2 является окисление сульфгидрильных групп белков канала или его регуляторных белков.

<u>Роль перекиси водорода в адренергической регуляции Ca^{2^+} -зависимой K^+ -</u> проницаемости мембраны эритроцитов

В ряде работ показано участие внутриклеточных сигнальных систем в регуляции $K^+(Ca^{2^+})$ -каналов эритроцитов [Орлов С.Н.с соавт., 1992; Петрова И.В. с соавт., 1997; Pellegrino M, Pellegrini M., 1998; Del Carlo B. et al., 2003]. Известно, что активность ряда ферментов, являющихся участниками внутриклеточных регуляторных каскадов, таких как протеинкиназа C, NO-синтаза,

гуанилатциклаза и др. модулируются АФК [Sheehan D.W. et al., 1993; Rodriguez-Martinez M.A. et al., 1998; Thakali K. et al., 2005].

В следующей серии экспериментов было исследовано влияние агониста α_1 -адренэргических рецепторов L-фенилэфрина на $K^+(Ca^{2+})$ -каналы в условиях повышенной концентрации H_2O_2 . L-фенилэфрин (10^{-8} M) в отсутствии перекиси водорода приводил к увеличению амплитуды ΓO на $9,45\pm1,69\%$ (n=7, p<0,05), но не изменял параметры V_1 и V_2 . Совместное действие H_2O_2 и L-фенилэфрина вызывало существенный рост параметров ΓO : амплитуда увеличивалась почти в 2 раза, скорость развития ΓO – более чем, в 3 раза, а скорость восстановления – в 5 раз (рис. 3).

Одним ключевых ИЗ ферментов сигнального пути, опосредованного α₁-адренэргическими рецепторами, явпротеинкиназа ляется Известно, (ΠKC) . эритроцитах ПКС вызывает увеличение входа ионов кальция, что ведет к активации Са²⁺-зависимой [Andrews проницаемости D.A. et al., 2002; Klarl B.A. et 2006]. Возможно, условиях повышения концентрации Н₂О₂, увеличивается активность ПКС, что ведет к возрастанию входа и, соответственно, к



Рис. 3. Влияние L-фенилэфрина на параметры гиперполяризационного ответа мембраны эритроцитов здоровых доноров на фоне повышенной концентрации перекиси водорода.

* – обозначены параметры, достоверно отличающиеся от контрольных значений с p<0,05.

увеличению Ca^{2+} -зависимой K^{+} -проницаемости мембраны эритроцитов.

Подобные результаты получены при обработке эритроцитов активатором ПКС форбол-миристат-ацетатом (ФМА) (10^{-7} М). ФМА приводил к достоверному увеличению амплитуды и скорости развития ГО до $114,70\pm12,32~\%$ (n=8,~p<0,05) и $132,14\pm0,39~\%$ (n=8,~p<0,05) соответственно. На фоне повышенной концентрации H_2O_2 стимулирующее влияние ФМА на $K^+(Ca^{2+})$ -каналы сохранялось: амплитуда и скорость развития ГО оставались увеличенными.

Таким образом, полученные данные позволяют предположить, что в эритроцитах $A\Phi K$, в частности, H_2O_2 , регулируют сигнальный каскад, опосредованный α_1 -адренэргическими рецепторами, реализуя свое действие, скорее всего, через модуляцию активности протеинкиназы C. Результатом является увеличение Ca^{2^+} -зависимой K^+ -проницаемости.

<u>Влияние оксида азота на Ca^{2+} -зависимую K^{+} - проницаемость мембраны эритроцитов</u>

Для изучения влияния оксида азота в экспериментальной практике широко используются нитросоединения – доноры NO. В проведенных экспериментах был применен нитропруссид натрия (НП) [Ignarro L., 1987].

Добавление в среду инкубации эритроцитов НП в концентрациях от 10^{-8} до 10^{-6} М не вызывало изменений амплитуды гиперполяризационного ответа (ГО) эритроцитов (рис. 4).

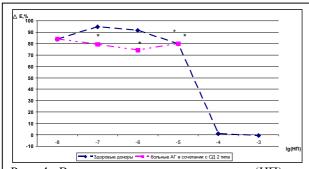


Рис. 4. Влияние нитропруссида натрия (НП) на амплитуду гиперполяризационного ответа мембраны эритроцитов здоровых доноров и больных АГ в сочетании с СД 2 типа. За 100% приняты значения амплитуды ГО в

отсутствии НП.

* – обозначены параметры, достоверно

* – обозначены параметры, достоверно отличающиеся от контрольных значений с p<0,05.

Добавление 10-5 М НП к среде инкубации эритроцитов приводило к снижению амплитуды ГО на 20,5±0,84% (n=6, р<0,05) (рис. 4). Кроме того, уменьшались и скорость развития Γ О (V₁), и скорость восстановления МП (V_2) . Эти параметры составили $42.0\pm0.49\%$ (n=6, p<0.05) и $87.0\pm0.04\%$ (n=6, p<0.05), соответственно. При увеличении концентрации ΗП В среде инкубации до 10⁻⁴ - 10⁻³ М ГО эритроцитов получить не удалось.

Имеется множество данных о стимуляции НП калиевой проводимости мембраны ряда клеток, в первую очередь,

гладкомышечных. Каковы же причины неожиданного влияния $H\Pi$ на $K^+(Ca^{2^+})$ - каналы мембраны эритроцитов?

Следует отметить, что относительно донорной способности НП не существует единой точки зрения. Некоторые авторы считают, что НП спонтанно освобождает оксид азота [Ignarro L.J. et al., 2002], который легко проникает внутрь клеток и оказывает свое регуляторное действие. Согласно другой точке зрения, НП подвергается изменениям, в которых участвует мембранносвязанная НАДН-дегидрогеназа [Mohazzab-H. K. M., et al., 1999]. Кроме того, НП освобождает не только NO, но и ионы ферроцианида и феррицианида [Pasch T. et al., 1983; Солнцева Е.И. с соавт, 2009; Lockwood A. et al., 2010], которые вмешиваются в процессы переноса электронов посредством фрагментов электронно-транспортной цепи (НАДН-дегидрогеназа, цитохром с), имеющихся на мембране эритроцитов [Kennet E., Philip W., 2003]. В ряде работ продемонстрировано, что звенья этой цепи вмешиваются в регуляцию Ca²⁺-зависимой калиевой проницаемости [Alvarez J. et al., 1984; 1992].

Возможно, полученные эффекты НП обусловлены не только NO, но и другими продуктами его диссоциации.

Чтобы избежать NO-независимых эффектов НП, мы использовали другой подход для увеличения концентрации оксида азота, связанный с естественным предуктором NO L-аргинином.

Известно, что эритроциты содержат NO-синтазу — фермент, образующий оксид азота из L- аргинина [Kleinbongard P. et al., 2005; Suhr F. et al., 2009]. В ряде работ показано, что увеличение концентрации L-аргинина приводит к увеличенной продукции NO [Chen L.Y., Mehta J.L., 1998; Nameda Y. et al., 1996; Дмитриенко Н.П., 2008].

Инкубация эритроцитов с L-аргинином (10^{-6} М) вызывала достоверное повышение как амплитуды, так и скорости развития ГО эритроцитов. ΔE увеличился до $124\pm1,26$ % (n=9, p<0,05), а V_1 – до $113\pm0,2$ % (n=5, p<0,05) (рис.5). Скорость восстановления МП эритроцитов не изменилась и составила $100,67\pm0,05$ % (n=6).

Ингибирование NO-синтазы с помощью L-NMMA ($24\cdot10^{-5}$ M) снижало амплитуду ГО до $85,1\pm2,26\%$ (n=9, p<0,05) (рис. 5).

Таким образом, в проведенных экспериментах установлено, что внутриклеточная продукция NO увеличивает Ca^{2+} -зависимую калиевую проницаемость мембраны эритроцитов. Подтверждением этому являются сведения, что L-аргинин снижает гипотонический гемолиз красных клеток крови вследствие активации выхода ионов калия [Caramelo C. et al., 1994].

В работах по изучению участия NO в регуляции Na^+/H^+ -обмена и K^+ -CI-котранспорта эритроцитов показан цГМФ-зависимый эффект оксида азота [Petrov V, Lijnen P., 1996; Adragna N.C., Lauf P.K., 1998; Adragna N.C. et al., 2000].

Для выяснения цГМФ-зависимого действия оксида азота обычно применяют ингибитор растворимой гуанилатциклазы — метиленовый синий [Реутов В.П., 1994; Drewett J.,1994]. Однако, предварительные эксперименты показали, что метиленовый синий сам изменяет параметры Γ O: в концентрации 10^{-6} M он

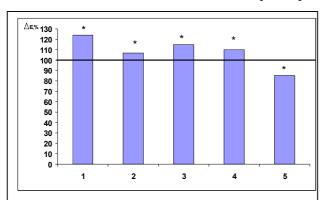


Рис. 5. Влияние L-аргинина (1), дибутирил-цГМФ (2), изобутилметилксантина (3), запринаста(4) и L-NMMA(5) на амплитуду гиперполяризационного ответа (ГО) мембраны эритроцитов здоровых доноров. За 100% принимались контрольные значения

амплитуды ГО без добавления агентов.

* – обозначены параметры, достоверно отличающиеся от контрольных значений с p<0,05.

увеличивает амплитуду и скорость развития Γ O, что свидетельствует о его влиянии на Ca^{2+} -активируемую калиевую проницаемость эритроцитов. Имеются данные о прямом влиянии метиленового синего на Ca^{2+} -активируемые K^+ -каналы высокой проводимости [Stockand J.D., Sansom S.C., 1996].

В связи с этим были проведены эксперименты с агентами, увеличивающими внутриклеточную концентрацию цГМФ: дибутирил-цГМФ $(10^{-4}\ \mathrm{M})$ – проникающим в клетки аналогом цГМФ и ингибиторами фосфодиэстераз: изобутилметилксантином $(10^{-4}\ \mathrm{M})$ и

запринастом (10^{-4} М). Инкубация эритроцитов со всеми перечисленными веществами приводила к повышению амплитуды ГО на 7,14±0,76% (n=6, p<0,05), 15,03±2,17% (n=6, p<0,05) и 10,14±2,51% (n=6, p<0,05), соответственно (рис. 5).

Скорость развития ГО достоверно увеличивалась при действии изобутилметилксантина, запринаста и составляла $132\pm0.39\%$ (n=6, p<0.05) и $114.52\pm0.25\%$ (n=6, p<0.05), соответственно. Оказалось, что L-аргинин,

дибутирил-цГМФ и ингибиторы ФДЭ действуют однонаправлено, увеличивая активность Ca^{2^+} -активируемых калиевых каналов, что позволяет предположить наличие цГМФ-опосредованного действия оксида азота на каналы.

Таким образом, в настоящем исследовании обнаружено, что донор оксида азота $H\Pi$ в концентрациях выше 10^{-5} М снижает Ca^{2+} -зависимую K^+ -проницаемость эритроцитов, возможно, из-за развития некоторых побочных эффектов. Предуктор NO L-аргинин увеличивает Ca^{2+} -зависимую K^+ -проницаемость мембраны эритроцитов. K такому же эффекту приводит и увеличение внутриклеточной концентрации цГМФ.

<u>Вклад Ca^{2^+} -зависимой K^+ -проницаемости и модулирующих ее агентов в деформируемость эритроцитов здоровых доноров</u>

Эритроциты вносят существенный вклад в реологические свойства крови, что во многом определяется их способностью обратимо изменять форму. Известно, что увеличение внутриклеточной концентрации ионов кальция, кроме активации $K^+(Ca^{2+})$ -каналов ведет к снижению деформируемости красных клеток крови. Не исключено, что этот эффект обусловлен повышением Ca^{2+} -зависимой K^+ -проницаемости мембраны. Для проверки этого предположения изучено влияние Ca^{2+} -зависимой K^+ -проницаемости и $A\Phi K$ на деформируемость эритроцитов.

Деформируемость эритроцитов исследовалась методом лазерной эктацитометрии при скоростях сдвига 90, 180, 360 и 890 c^{-1} .

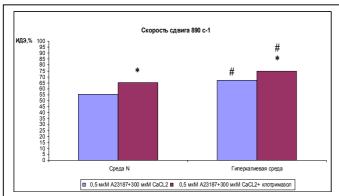


Рис. 6. Изменения деформируемости эритроцитов в различных средах при скорости сдвига 890 с⁻¹.

- *- обозначены ИДЭ, достоверно отличающиеся от значений, полученных в отсутствие клотримазола с p<0.05.
- #- обозначены ИДЭ, достоверно отличающиеся от значений, полученных в отсутствие клотримазола в различных средах с p<0,05.

Для необратимого увеличения Ca^{2+} -зависимой K^{+} -проницаемости эритроциты прединкубировали в среде N, содержащей 0,5 мкМ Ca^{2+} -ионофора A23187 и 300 мкМ $CaCl_2$.

В этих условиях индекс деформируемости эритроцитов (ИДЭ) снижался до $70,27\pm0,2\%$ (n=7, p<0,05), $57,54\pm1,26\%$ (n=7, p<0,05) и $55,46\pm0,46\%$ (n=7, p<0,05) и $55,46\pm0,46\%$ (n=7, p<0,05) при скоростях сдвига 90, 180, 360 и 890 с $^{-1}$, соответственно.

Одной из причин снижения деформируемости эритроцитов в этих условиях может быть активация Ca^{2+} -зависимой K^+ -проницаемости.

Для проверки этого предположения был использован подход, связанный с прекращением выхода ионов калия из клеток: обработка эритроцитов блокатором $K^+(Ca^{2+})$ -каналов клотримазолом и/или прединкубация эритроцитов в гиперкалиевой среде. Внесение 2 мкМ клотримазола в среду инкубации

эритроцитов совместно с A23187 и 300 мкМ CaCl₂ приводило к достоверному увеличению ИДЭ на 17,18±0,7% (n=7, p<0,05), 16,52 ± 1,72% (n=7, p<0,05), 13,4 ± 0,8% (n=7, p<0,05) и 9,87 ± 0,89% (n=7, p<0,05), соответственно, при скоростях сдвига 90, 180, 360 и 890 с⁻¹ по сравнению со значениями, полученными в отсутствие блокатора (рис. 6). Инкубация эритроцитов в гиперкалиевой среде, содержащей 0,5 мкМ Ca^{2+} -ионофора A23187 и 300 мкМ $CaCl_2$, также вызывала рост ИДЭ по сравнению со значениями, полученными в среде N. Его значения составили 74,08±0,84% (n=7, p<0,05), 63,05±0,11% (n=7, p<0,05), 69,48±0,23% (n=7, p<0,05) и 67,13±0,76% (n=7, p<0,05), соответственно, от контрольных значений. Совместное действие клотримазола и гиперкалиевой среды приводило к еще более выраженному увеличению ИДЭ. Однако полного восстановления деформируемости эритроцитов в этих условиях не происходило и при скоростях сдвига 90, 180, 360 и 890 с⁻¹ ИДЭ составил 90,61±0,06% (n=7, p<0,05), 78,0±2,16% (n=7, p<0,05), 71,58±1,83% (n=7, p<0,05) и 74,98±0,37% (n=7, p<0,05), соответственно, от контрольных значений (рис. 6).

Причина этого связана с тем, что увеличение внутриклеточной концентрации ионов кальция, помимо открывания $K^+(Ca^{2+})$ -каналов, приводит к нарушению состояния белков мембранного каркаса, изменениям в липидном матриксе мембраны [Lang F. et al., 2004], что играет важную роль в деформируемости эритроцитов [Freedman J.C. et al., 1988; Weed R.I. et al., 1969].

Известно, что изменение транспорта ионов через эритроцитарную мембрану может приводить к изменению объема этих клеток [Орлов С.Н. с соавт., 1988]. Утечка ионов калия из клеток через $K^+(Ca^{2+})$ -каналы влечет за собой их дегидратацию и, следовательно, сжатие [Lang F. et al., 2003, 2004].

В настоящей работе спектрофотометрическим методом было показано сжатие эритроцитов в условиях активации Ca^{2^+} -зависимой K^+ -проницаемости, которое устранялось при добавлении блокатора каналов клотримазола.

Таким образом, полученные результаты свидетельствуют об определенном вкладе Ca^{2^+} -зависимой K^+ -проницаемости в деформируемость эритроцитов. Одной из причин снижения деформируемости эритроцитов в этих условиях может являться сжатие клеток.

Добавление аминотриазола к среде инкубации эритроцитов повышало ИДЭ относительно контрольных значений на $8,11\pm0,77\%$ (n=8), $30,69\pm2,97\%$ (n=8, p<0,05), $18,9\pm7,33\%$ (n=8, p<0,05) и $5,40\pm2,85\%$ (n=8) при всех выбранных скоростях сдвига. Возможно, эффект связан со снижением Ca^{2+} -зависимой K^{+} -проницаемости в условиях повышения внутриклеточной продукции перекиси водорода, что было обнаружено в настоящем исследовании.

Влияние активных форм кислорода на Ca^{2^+} -зависимую K^+ - проницаемость мембраны эритроцитов больных артериальной гипертензией в сочетании <u>с</u> сахарным диабетом 2 типа

Многие патологические состояния, в том числе артериальная гипертензия и сахарный диабет 2 типа, сопровождаются развитием окислительного стресса, нарушениями метаболизма оксида азота [Baynes J.W., 1991; De Mattia G. et al., 1998] и снижением деформируемости эритроцитов [McMillan D.E. et al., 1978; Fujita J. et al., 1996; Miossec P. et al., 1999].

В одинаковых условиях стимуляции Ca^{2^+} -зависимой K^+ -проницаемости амплитуда Γ O эритроцитов больных $A\Gamma$ в сочетании с CД 2 типа достоверно снижена по сравнению со здоровыми донорами и составляет $84,35\pm4,33\%$ (n=8, p<0,05). Возможная причина этого эффекта - повышенная концентрация ионов кальция в цитоплазме эритроцитов у исследованной категории больных [Fujita J. et al., 1996]. Одинаковая добавка Ca^{2^+} приводит к меньшему ответу в условиях повышенной внутриклеточной концентрации ионов кальция. Это может быть связано со снижением чувствительности каналов к Ca^{2^+} у больных $A\Gamma$ в сочетании с CД 2 типа.

Прединкубация эритроцитов больных с ксантином (10^{-4} M) и ксантиноксидазой (10 мU/ мл) в течение 10 минут не изменяла амплитуду и скорость развития ГО, но достоверно увеличивала скорость восстановления МП: этот параметр составил $124,84\pm0,19\%$ (n=9, p<0,05), что свидетельствует о возрастании активности Ca^{2+} -AT Φ азы.

Увеличение продолжительности инкубации эритроцитов с ксантином и ксантиноксидазой до 20 и 30 минут привело к росту амплитуды Γ O до 114,8±6,14% (n=9, p< 0,05) и 124,58±4,38% (n=9, p< 0,05), соответственно (рис.7.A), в то время как у здоровых доноров в этих условиях наблюдалось снижение исследуемого параметра.

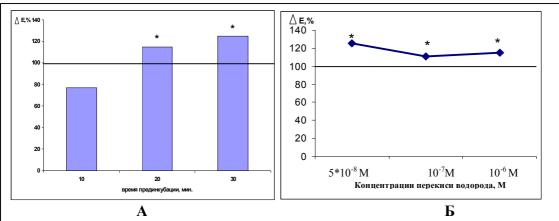


Рис. 7. Зависимость амплитуды гиперполяризационного ответа эритроцитов больных АГ в сочетании с СД 2 типа от времени прединкубации с ксантином (10^4 M) и ксантиноксидазой (10 мл/U) (A) и от концентрации перекиси водорода (Б).

За 100% принимались контрольные значения амплитуды ΓO без добавления агентов.

Влияние перекиси водорода на параметры ГО эритроцитов больных также отличалось от результатов, полученных для здоровых доноров. Так, параметр ΔE достоверно увеличивался до 125,78±2,73% (n=7, p<0,05), 111,15±3,42% (n=7, p<0,05) и 114,94±2,05% (n=7, p<0,05), соответственно при добавлении $5\cdot10^{-8}$, 10^{-7} и 10^{-6} М H_2O_2 (рис. 7.Б), тогда как у здоровых доноров наблюдалось снижение

^{* –} обозначены параметры, достоверно отличающиеся от контрольных значений с p<0.05.

амплитуды ГО при этих же концентрациях перекиси водорода, но только в условиях предобработки эритроцитов ингибитором каталазы.

Стимуляция α_1 -адренэргических рецепторов эритроцитов больных L-фенилэфрином не приводила к изменению параметров ГО. Активатор протеинкиназы С ФМА также не изменял параметры ГО эритроцитов больных АГ в сочетании с СД 2 типа. Отсутствие влияния L-фенилэфрина и ФМА на $K^+(Ca^{2+})$ -каналы эритроцитов больных АГ в сочетании с СД 2 типа может быть связано с тем, что у этой категории больных активность протеинкиназы С изначально повышена [Александровский Я.А., 1998].

Совместное действие H_2O_2 и L-фенилэфрина вызывало повышение амплитуды и скорости развития ΓO эритроцитов до $187,72\pm22,39\%$ (n=6, p<0,05) и $245,78\pm25,27\%$ (n=6, p<0,05), соответственно. Скорость восстановления мембранного потенциала эритроцитов в описанных условиях также возрастала до $388,89\pm63,19\%$ (n=6, p<0,05).

Аналогичный эффект наблюдался и при действии ФМА на фоне повышенной концентрации H_2O_2 . Так, амплитуда ГО возрастала до $128,56\pm13,61\%$ (n=7, p<0,05), а скорость развития ГО — до $113,64\pm6,35\%$ (n=7, p<0,05). Скорость восстановления МП эритроцитов в этих условиях достоверно не изменялась.

Инкубация эритроцитов больных в присутствии 10^{-7} , 10^{-6} и 10^{-5} М НП достоверно снижала амплитуду ГО ответа эритроцитов. Этот параметр составил 79,47±11,01% (n=6, p<0,05), 74,39±8,47% (n=6, p<0,05) и 80,09±4,26% (n=6, p<0,05), соответственно (рис. 4). Скорость развития ГО и скорость восстановления мембранного потенциала эритроцитов больных АГ в сочетании с СД 2 типа в присутствии НП достоверно не изменялись. Таким образом, эффекты НП оказались однонаправленными и у больных, и у здоровых доноров. Однако у больных снижение амплитуды ГО эритроцитов под воздействием НП происходило уже при концентрации 10^{-7} М и последующее увеличение концентрации донора NO не приводило к дальнейшим изменениям этого параметра.

В условиях дисбаланса про- и антиоксидантных систем эритроцитов [Ефимов А.С., Науменко В.Г., 1985; Ваупез Ј.W., 1991; De Mattia G. et al., 1998], усиления перекисного окисления липидов [Максимов О.В., Солун М.Н., 1989], увеличения степени гликозилирования не только гемоглобина, но и белков мембранного каркаса [Schwartz R.S. et al., 1991; Mahindrakar Y. S, et al., 2007], отмечаемых у больных АГ в сочетании с СД 2 типа, изменение Ca²⁺-зависимой калиевой проницаемости мембраны клеток будет являться дополнительным весьма неблагоприятным фактором, ведущим к дальнейшему снижению деформируемости эритроцитов.

Таким образом, в настоящем исследовании установлено, что регуляция активными формами кислорода $K^+(Ca^{2+})$ -каналов эритроцитов больных $A\Gamma$ в сочетании с $C \not \Box$ 2 типа существенно изменена.

ЗАКЛЮЧЕНИЕ

 $K^+(Ca^{2+})$ -каналы играют важную роль в функционировании эритроцита, в частности, участвуя в изменении объема клеток, а также в процессе эриптоза. В настоящем исследовании установлено, что, кроме этого, Ca^{2+} -зависимая K^+ -проницаемость мембраны вносит существенный вклад в регуляцию деформируемости красных клеток крови: увеличение в среде инкубации ионов кальция снижает индекс деформируемости эритроцитов, что частично устраняется блокатором каналов клотримазолом или прединкубацией в гиперкалиевой среде. Одной из причин снижения деформируемости эритроцитов при активации $K^+(Ca^{2+})$ -каналов может быть дегидратация клеток вследствие утечки ионов калия и их сжатие, что подтверждено спектрофотометрическими исследованиями.

Известно, что на деформируемость эритроцитов, эриптоз оказывают воздействие активные формы кислорода, в частности, оксид азота. В связи с этим важным представляется исследование функционирования $K^+(Ca^{2+})$ -каналов эритроцитов в условиях повышенной концентрации $A\Phi K$, тем более, что они могут выступать в роли либо регуляторов, либо повреждающих факторов.

В настоящем исследовании установлено, что $A\Phi K$, в том числе перекись водорода и NO вмешиваются в регуляцию $K^+(Ca^{2+})$ -каналов эритроцитов.

Увеличение внутриклеточной концентрации перекиси водорода с помощью Ca²⁺-зависимой каталазы приводит снижению ингибирования К проницаемости, но к повышению активности Са²⁺-насоса мембраны эритроцитов здоровых доноров. Ранее было установлено, что Ca²⁺-ATФаза вносит существенный вклад в формирование ГО эритроцитов [Орлов С.Н. с соавт., 1992] и увеличение ее активности приводит к снижению амплитуды ГО. С другой стороны, мишенями для перекиси водорода, являются сульфгидрильные группы белковых молекул, в том числе и белков каналов [Быстрова М.Ф и Буданова Е.Н., 2007]. Возможно, обнаруженное снижение Ca^{2+} -зависимой K^{+} -проницаемости эритроцитов здоровых доноров под действием перекиси водорода можно рассматривать как защитную реакцию, препятствующую преждевременной гибели клеток и снижению их деформируемости в условиях повышенной продукции АФК.

В эритроцитах больных, напротив, при увеличении содержания перекиси водорода отмечается повышение ${\rm Ca}^{2^+}$ -зависимой ${\rm K}^+$ -проницаемости мембраны клеток. Это должно способствовать дальнейшему снижению деформируемости эритроцитов и сокращению времени их жизни, что отмечается при патологиях, объединенных развитием окислительного стресса.

В проведенном исследовании выяснилось, что применение нитропруссида натрия для изучения NO-зависимой регуляции $K^+(Ca^{2+})$ -каналов эритроцитов вызывает ряд затруднений. Это связано с тем, что при увеличении его концентрации развиваются побочные NO-независимые эффекты, по-видимому,

маскирующие действие самого оксида азота. В связи с этим в качестве источника оксида азота был использован L-аргинин — субстрат для NO-синтазы. Выяснилось, что NO увеличивал активность $K^+(Ca^{2+})$ -каналов здоровых доноров. Свое действие на Ca^{2+} -активируемую калиевую проницаемость эритроцитов NO, как и в других клетках, по-видимому, реализует цГМФ-зависимым способом. Это подтверждается полученными данными об однонаправленном действии на $K^+(Ca^{2+})$ -каналы L-аргинина, дибутирил-цГМФ и ингибиторов ФДЭ.

Таким образом, АФК модулируют активность $K^+(Ca^{2+})$ -каналов эритроцитов как здоровых доноров, так и больных артериальной гипертензией в сочетании с сахарным диабетом 2 типа. Эффекты исследованных АФК оказались во многом противоположными для $K^+(Ca^{2+})$ -каналов эритроцитов больных по сравнению со здоровыми донорами. Окислительный стресс, развивающийся при данной патологии, приводит к существенным изменениям регуляции $K^+(Ca^{2+})$ -каналов эритроцитов.

выводы

- 1. Повышение внутриклеточной концентрации перекиси водорода снижает, а оксида азота увеличивает Ca^{2^+} -зависимую K^+ -проницаемость мембраны эритроцитов здоровых доноров. Супероксид-анион при его действии с наружной стороны мембраны, не изменяет активность Ca^{2^+} -активируемых K^+ -каналов эритроцитов здоровых доноров и больных артериальной гипертензией в сочетании с сахарным диабетом 2 типа.
- 2. Совместное действие перекиси водорода и агониста α_1 -адренэргических рецепторов L-фенилэфрина значительно увеличивает Ca^{2^+} -зависимую K^+ -проницаемость мембраны эритроцитов здоровых доноров.
- 3. Стимуляция Ca^{2+} -зависимой K^{+} -проницаемости снижает деформируемость эритроцитов здоровых доноров, что сопровождается уменьшением объема клеток.
- 4. Под действием перекиси водорода Ca^{2+} -зависимая K^{+} -проницаемость мембраны эритроцитов больных артериальной гипертензией в сочетании с сахарным диабетом 2 типа возрастает.

СПИСОК РАБОТ, ОПУБЛИКОВАННЫХ ПО ТЕМЕ ДИССЕРТАЦИИ

Отформатировано: Шрифт: 8 пт

- 1. Роль активных форм кислорода в регуляции Ca^{2+} -активируемых калиевых каналов эритроцитов / О.А. Трубачева // Всероссийская 66-ая юбилейная студенческая научная конференция им. Н.И. Пирогова: сборник статей. Томск: СибГМУ, 2007. С.363–364.
- 2. Исследование влияния фенилэфрина гидрохлорида на Ca²⁺-активируемых калиевых каналов эритроцитов здоровых доноров и больных артериальной гипертензией в сочетании с сахарным диабетом 2-го типа / О.А. Трубачева, А.В. Ситожевский, С.В. Кремено, О.В. Груздева, И.В. Петрова // 2 съезд кар-

диологов сибирского федерального округа: материалы научной конференции. – Томск, 2007. – С. 121-122.

- 3. Исследование влияния метаболитов системы ксантин-ксантиноксидаза на Ca²⁺-зависимую калиевую проницаемость мембраны эритроцитов здоровых доноров / О.А. Трубачева, С.В. Кремено, А.В. Ситожевский, И.В. Петрова, О.В. Груздева, В.В Иванов // III Всероссийская научно-практическая конференции с международным участием "Фундаментальные аспекты компенсаторно-приспособительных процессов". Новосибирск, 2007. №7 (62). С. 50.
- 4. Внутриклеточные механизмы реализации эффектов оксида азота на Ca²⁺- зависимую калиевую проницаемость мембраны эритроцитов больных сахарным диабетом 2 типа в сочетании с артериальной гипертензией / О.А. Трубачева, С.В. Кремено, О.В. Груздева, И.В. Рогачевская // Наука о человеке: материалы IX конгресса молодых ученых и специалистов. Томск: СибГМУ, 2008. С. 94.
- 5. Вклад активных форм кислорода в регуляции Ca²⁺-активируемых калиевых каналов эритроцитов человека / О.А. Трубачева, А.В. Ситожевский, С.В. Кремено, О.В. Груздева, И.В. Петрова, В.В. Иванов // VI Сибирский физиологический съезд. Тезисы докладов. Барнаул: Принтэкспресс, 2008. С. 16-17.
- 6. Влияние нитропруссида натрия на Ca²⁺-зависимую калиевую проницаемость эритроцитов больных с сахарным диабетом 2 типа в сочетании с артериальной гипертензией / О.А. Трубачева, С.В. Кремено, О.В. Груздева, И.В. Рогачевская // Актуальные проблемы современной эндокринологии: материалы Всероссийской научно-практической конференции молодых ученых и специалистов. Москва, 2008. С. 35.
- 7. Регуляция Ca²⁺-зависимой калиевой проницаемости мембраны: роль протеинкиназы С / О.А. Трубачева, О.Н. Насанова, С.В. Кремено, О.В. Груздева // XVI Международная конференция студентов, аспирантов и молодых ученых "Ломоносов": материалы докладов. Москва, 2009. С.40.
- 8. Участие мембранных редокс-процессов и активированных кислородных метаболитов в регуляции Ca^{2+} -зависимой калиевой проницаемости мембраны эритроцитов здоровых доноров и больных с сахарным диабетом 2 типа в сочетании с артериальной гипертензией / О.А. Трубачева, С.В. Кремено, О.В. Груздева // Наука о человеке: материалы X конгресса молодых ученых и специалистов. Томск: СибГМУ, 2009. С. 87-88.
- 9. Влияние перекиси водорода и форболового эфира на K⁺(Ca²⁺)-каналы эритроцитов больных артериальной гипертензией в сочетании с сахарным диабетом 2 типа / О.А. Трубачева, С.В. Кремено, О.В. Груздева, И.В. Рогачевская // Актуальные вопросы современной медицинской науки и здравоохранения: материалы 64-й всероссийской научно-практической конференции молодых ученых и студентов с международным участием. Екатеринбург, 2009. С. 577-578.
- 10. Участие активных форм кислорода в регуляции Ca^{2^+} -активируемых K^+ -каналов эритроцитов / О.А. Трубачева, С.В. Кремено, И.В. Петрова,

- А.В. Ситожевский, О.В. Груздева, В.В. Иванов, Т.Е. Суслова // **Бюллетень сибирской медицины**. $-2009. \cancel{N}2. C. 56-60.$
- 11. Оксид азота регулятор Ca²⁺-зависимой калиевой проницаемости мембраны эритроцитов человека / О.А. Трубачева, И.В. Рогачевская, С.В. Кремено, О.В. Груздева // Бюллетень северного государственного медицинского университета № 1 (XXII). Архангельск, 2009. С. 236.
- 12. Вклад протеинкиназы С в регуляцию Са²⁺-зависимой К⁺ проницаемости мембраны эритроцитов у больных АГ в сочетании С СД 2 типа/ О.А. Трубачева, О.Н. Насанова, С.В. Кремено, О.В. Груздева // Завадские чтения: материалы IV научно-практической конференции молодых учёных с международным участием. Ростов-на-Дону, 2009. С. 123-124.
- 13. Оксид азота как регулятор Ca²⁺-зависимой калиевой проницаемости мембраны эритроцитов здоровых доноров/ О.А. Трубачева, С.В. Кремено, А.В. Ситожевский, Т.Е Суслова // Нейрогуморальные механизмы регуляции висцеральных органов и систем в норме и при патологии: материалы научной конференции. Томск, 2009. С. 98-100.
- 14. Изучение влияния донаторов на Ca^{2+} -зависимую калиевую проводимость мембраны и способность к деформируемости эритроцитов человека / О.А. Трубачева, А.С. Васильев // IV Международная научная конференция молодых ученых-медиков: материалы научной конференции.— Курск, 2010. Т.2. С. 269-271.
- 15. Влияние донатора оксида азота нитропруссида натрия и пероксида водорода Ca^{2+} -зависимую K^{+} проницаемость мембраны эритроцитов у больных артериальной гипертензией в сочетании с сахарным диабетом 2 типа / О.А. Трубачева, О.Н. Насанова, И.В. Петрова, Т.Е. Суслова, А.В. Ситожевский, С.В. Кремено // Сибирский медицинский журнал: материалы научной конференции. Томск. 2010. T.25, №2. С. 146.
- 16. Регуляция Ca²⁺-активируемых калиевых каналов: роль оксида азота и пероксида водорода / И.В. Петрова, О.А. Трубачева, А.В. Ситожевский, Т.Е. Суслова, С.В. Кремено // XXI Съезд Физиологического общества им. И.П.Павлова. Калуга, 2010. –С. 477.
- 17. Влияние активных форм кислорода на Ca^{2+} -активируемую K^{+} -проницаемость эритроцитов больных артериальной гипертензией в сочетании с сахарным диабетом 2 типа / О.А. Трубачева // Сибирский медицинский журнал. Томск. 2011. Т.26, №1. С. 118-122.

СПИСОК ИСПОЛЬЗОВАННЫХ СОКРАЩЕНИЙ

АГ – артериальная гипертензия

АФК – активные формы кислорода

ГО – гиперполяризационый ответ

ГЦ – гуанилатциклаза

ИДЭ – индекс деформируемости

эритроцитов

 $K^{+}(Ca^{2+})$ -канал кальший активируемый калиевый канал

МН – мембранный потенциал

НП – нитропруссид натрия

Н₂О₂ – перекись водорода

 O_2^- супероксид-анион

СД 2 типа – сахарный диабет 2типа

ПК С – протеинкиназа С

ФЭ - фенилэфрин

ФДЭ – фосфодиэстераза

ФМА – форбол-меристат-ацетат

цГМФ – циклический 3:5-гуанозин-

монофосфат

NO - оксид азота

L-NMMA-N-monomethil-l-argenine

Отформатировано: английский (США)

Автор выражает благодарность директору ГУ НИИ кардиологии Сибирского отделения РАМН, академику РАМН Р.С. Карпову; руководителю клинико-Т.Е. Сусловой; диагностической лаборатории в.н.с., к.м.н. н.с., А.В. Ситожевскому; лаборатории фармакологии кровообращения Фармакологии СО РАМН профессору, д.б.н. М.Б. Плотникову; н.с., д.м.н. О.И. Алиеву; н.с. А.С. Васильеву; к.б.н., доценту кафедры биохимии и молекулярной биологии В.В. Иванову; н.с. лаборатории клеточных технологий отдела экспериментальной и клинической кардиологии Учреждения РАМН НИИ комплексных проблем сердечно-сосудистых заболеваний Сибирского отделения РАМН, к.м.н. С.В. Кремено за оказанное содействие в проведении настоящего исследования.

Удалено: ¶

Отформатировано: английский (США)

Удалено: ¶

Отформатировано: Шрифт: 14 пт, английский (США)

Отформатировано: Шрифт: 14 пт

Удалено:

Отформатировано: Шрифт:

14 nT

Удалено:

Отформатировано: Шрифт:

Подписано в печать 17.05.2011 г. Усл. печ. листов 0.65 Печать на ризографе. Отпечатано в лаборатории оперативной полиграфии ГОУ ВПО Сиб ГМУ 634050, г. Томск, Московский тракт, 2, тел. 53-04-08 Заказ № 199. Тираж 100 экземпляров