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Abstract: The manufacture of biomaterial surfaces with desired physical and chemical properties
that can directly induce osteogenic differentiation without the need for biochemical additives is an
excellent strategy for controlling the behavior of mesenchymal stem cells (MSCs) in vivo. We studied
the cellular and molecular reactions of MSCs to samples with a double-sided calcium phosphate
(CaP) coating and an average roughness index (Ra) of 2.4–4.6 µm. The study aimed to evaluate the
effect of a three-dimensional matrix on the relative mRNA expression levels of genes associated with
the differentiation and maturation of MSCs toward osteogenesis (RUNX2, BMP2, BMP6, BGLAP,
and ALPL) under conditions of distant interaction in vitro. Correlations were revealed between the
mRNA expression of some osteogenic and cytokine/chemokine genes and the secretion of cytokines
and chemokines that may potentiate the differentiation of cells into osteoblasts, which indicates
the formation of humoral components of the extracellular matrix and the creation of conditions
supporting the establishment of hematopoietic niches.

Keywords: human adipose tissue; stem cell culture; cytokine/chemokine genes; osteogenic genes;
microarc oxidation technique; technological coating properties; correlations

1. Introduction

Osteoimmunology is a modern, rapidly developing field [1] of regenerative medicine. However,
little is known about the interactions of bone and immune cells and the roles of secreted mediators [2],
and the available data are contradictory [2,3].

On the one hand, inflammation is a protective reaction to tissue damage, and the optimal strength
and duration of inflammation is necessary to prepare the tissue for subsequent recovery [2]. However,
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inflammatory cells and their mediators are not always required for tissue regeneration; their absence
can even accelerate wound healing [3]. This contradiction may be explained by the observation that
mesenchymal stem cells (MSCs) and their derivatives (osteoblasts, chondroblasts, and fibroblasts)
can gradually produce both inflammatory and osteogenic cytokines within 7–14 days after the injury
and during the subsequent healing stages [4]. The secretory activity of MSCs is also manifested when
induced by exposure to substrates with calcium phosphate (CaP) coatings [5].

On the other hand, numerous genes/signaling pathways controlling the osteogenic differentiation
of MSCs, secretion of regulatory proteins and mineralization (calcification) of the extracellular matrix
(ECM) are known and persistently studied. These genes/signaling pathways include those induced by
contact with sources of calcium and phosphorus, such as Runt-related transcription factor 2 (Runx2),
alkaline phosphatase (ALP), osteocalcin (OCN), osteopontin (OPN), bone morphogenetic proteins
(BMPs), mammalian homolog of Drosophila wingless (Wnt) ligands/β-catenin, the Ca2+-sensing
receptor (CaR), and Ca2+/protein kinase C [6–8]. However, knockdown of individual genes/transcription
factors only partially limits MSC proliferation and differentiation [9,10]. Occasionally, recombinant
human bone morphogenetic proteins (BMPs) alone cannot induce MSCs to undergo ECM mineralization
in vitro [11]. In addition, elevated activity of the osteoblast marker ALP or an increased concentration
of OCN is not always necessary for ECM mineralization in human cells [12].

Apparently, the molecular foundations underlying the osteogenic differentiation and maturation
of MSCs are incompletely defined. For example, information has recently been accumulating on the
osteomodulatory effects of inflammatory signaling molecules [13,14]. The surface properties of implants
affect the expression of genes and molecules mediating the intercellular signaling and differentiation of
osteoblasts [15] to promote bone substitute material-mediated regeneration [16]. These processes are
largely dependent on the solubility [8] and surface topography [17] of the CaP biomaterial.

Microarc oxidation (MAO) or plasma electrolytic oxidation (PEO) is one the appropriate method
to deposit CaP coatings for biomedical applications [18–20]. We found previously ECM mineralization
of 21-day MSC culture both on rough surface [21] and on plastic around the microarc CaP-coated
titanium (Ti) samples [22]. ALP and OCN expression [21] and secretion [23] accelerated by in vitro
contact with microarc CaP coating. At the same time, microarc CaP coating effect on osteogenic gene
expression in MSCs is still unclear from available publications, e.g., [20,24,25].

In this context, this work aimed to study the possibility of regulating osteogenic gene expression
mediated by the intercellular cytokine/chemokine signaling of MSCs induced by in vitro contact with
a scaffold-like CaP coating with a rough surface deposited on Ti substrates by MAO method.

2. Results and Discussion

2.1. Cell Viability and Cellular Immunophenotype

In a standard culture medium without osteogenic differentiation additives, the viability of adherent
fibroblast-like cells of human adipose tissue was greater than 92% by day 14 (Table 1). More than 95%
of the adherent cells expressed the markers CD73, CD90, and CD105 and exhibited weak (less than 1%)
expression of the hematopoietic cell markers CD45, CD34, CD20, and CD14 (Table 1). In a previous
study, after 21 days of cultivation in specialized StemPro®Differentiation Kit medium (Thermo Fisher
Scientific, Waltham, MA, USA), the test culture of human adipose-derived MSCs (hAMSCs) showed
positive staining for alizarin red (osteoblasts), alcian blue (chondroblasts) and oil red O (adipocytes) [26].
The minimal morphological criteria for cultured MSCs are (1) a viability of greater than 90% [27];
(2) positivity for the markers CD73, CD90, and CD105 and negativity for the blood cell markers
CD45, CD34, CD20, and CD14 [19,20]; and (3) the ability to adhere to plastic and differentiate in vitro
toward osteogenesis, chondrogenesis and adipogenesis [28]. Thus, the culture of hAMSCs used in this
experiment satisfied the minimal morphological criteria for MSCs.
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Table 1. Viability and immunophenotype of human adipose-derived MSCs (hAMSCs) collected from plastic after 14 days of coculture with the microarc CaP-coated
titanium substrates, Me (Q1–Q3).

Parameters of One Surface of a Bilateral CaP
Coating on a Titanium Substrate, n = 7

Number of
Viable Cells

%

Number of
Apoptotic

cells %

Number of
Necrotic cells

%

Stem Cell Markers, % Hemato-poietic
Cell Markers%

Ra
µm

Thickness
µm

Weight
mg CD73 CD90 CD105 [CD45,34,14,20]

Mesenchymal stem cell (MSC) culture on plastic (2D control), n = 3 1

− − −
92.54

(91.02–95.39)
1.54

(0.84–2.68)
5.02

(4.01–6.3)
95.31

(91.74–95.73)
98.57

(98.09–98.79)
98.86

(98.66–99.14)
0.36

(0.33–0.37)

hAMSC culture on plastic in contact with the CaP-coated titanium substrates

3.1
(2.4–3.3)

46.0
(35–53.5)

13.0
(11.2–14.0)

91.77
(91.47–93.14)

3.22
(1.43–4.20)

4.33
(3.64–6.8)

93.70
(85.71–93.73)

96.80
(92.83–97.31)

97.05
(93.60–97.74)

0.63 2

(0.56–0.63)
1 n-the number of tested samples (wells); each measurement was done in triplicate; 2 Statistical difference (Pu < 0.05) is shown according to Mann–Whitney U-test. (−) the measurements
were not done on plastic surface.
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The physicochemical properties of materials affect the functional activity and differentiation of
MSCs [29]. The surface roughness of the microarc CaP coating can control the osteogenic differentiation
of adherent MSCs upon direct contact, as reflected in the correlations of the Ra index with cell markers
of osteoblasts (ALP and OCN). In this case, the average roughness index (Ra) is closely related to the
thickness and mass of the CaP coating [21], which, when degraded, releases calcium and phosphorus
ions. These ions can regulate the expression of MSC markers [30]. Indeed, contact of hAMSCs with
CaP-coated samples for 21 days was found to suppress the immunophenotypic traits of hAMSCs
adhered to plastic as the relief of the CaP coating increased, while the population of hematopoietic
cells (CD45+CD34+CD14+CD20+) increased [22].

The results shown in Table 1 indicate that a statistically significant increase (almost 2-fold) in
the presentation of hematopoietic cell antigens due to the contact of the cell culture with CaP-coated
titanium samples occurred by the 14th day of observation and slightly preceded the decreases in the
expression of CD73, CD90, and CD105 markers.

2.2. In Vitro Osteogenic Differentiation

The main part of the plastic surface was occupied by fibroblast-like cells weakly stained by alizarin
red S when hAMSCs were cultured for 14 or 21 days in a standard nutrient medium without the
osteogenic supplements. Single small foci of calcification appeared in the ECM, which showed the
osteogenic differentiation of individual stem cells (Figure 1a,c) including hAMSC culture after 14-day
contact with the microarc CaP coating (Figure 1b). In turn, significant increase in the number and an
area of mineralized nodules (Figure 1d, Table 2) indicated an initiated differentiation of hAMSCs into
osteoblasts around the CaP-coated Ti substrates.Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW  4 of 19 
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Figure 1. Culture of human adipose-derived mesenchymal stem cells on plastic after 14 (a,b) or 21
days (c,d) in a standard nutrient medium: a,c—control; b,d—around the microarc CaP-coated titanium
sample. Staining with alizarin red S. Scale 100 µm
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Table 2. Osteogenic differentiation of hAMSCs on plastic after 21 days of in vitro coculture with the
microarc CaP-coated titanium substrates, Me (Q1–Q3).

Parameters of One Surface of a Bilateral CaP
Coating on a Titanium Substrate, n = 3 Indices of Alizarin Red S Staining

Ra
µm

Thickness
µm

Weight
mg

The Number of the
Sites of Cell Culture

Mineralization per Well

An Average Area of the
Mineralization Sites,

mm2

MSC culture on plastic (2D control), n = 4 1

− − − 0 0

hAMSC culture on plastic in contact with the CaP-coated titanium substrates

2.49 (2.20; 2.90) 45.5 (33.0; 56.5) 11.8 (9.6; 13.8) 156 (155–208) 2 0.0037 (0.0034–0.0043) 2

1 n-the number of tested samples (wells); 2 Statistical differences (Pu < 0.05) are shown with the 2D control according
to the Mann–Whitney U-test. (−) the measurements were not done on plastic surface.

Enhanced mineralization (calcification) of the ECM in the MSCs cultured on plastic, caused by
the microarc CaP coating, was identified previously by day 21 via alizarin red staining [21,22,26],
indicating in vitro the appearance of MSCs in osteoblastic hematopoietic niches [31]. Apparently, the
establishment of such microterritories begins at 14 days under conditions of autocrine and paracrine
secretion of chemokines as signaling molecules in the hematopoietic niches induced by the CaP
coating [5].

The thickness of one side (~46 µm, Tables 1 and 2) of the soluble microarc CaP coating allows
us to consider it to be scaffold-like, and to be able to determine the behavior of hAMSCs by direct
contact with the microrelief, as well as by indirect action through Ca2+ ions and inorganic phosphate
(Pi). A wavelike dissolution/precipitation of a microarc CaP coating with a loss of more than 9% of
the initial thickness was shown to occur after 8 weeks of in vitro degradation in a model biological
fluid [32]. For a calcium-deficient (Ca/P ratio < 1) microarc CaP coating, the Ca2+ and to a greater extent
Pi concentrations in model biological fluids are usually 0.5 mM per week [33] due to the balance of ion
release and reverse precipitation. Both extracellular calcium and phosphorus contribute to osteogenic
differentiation and mineralization of the ECM over a wide range of concentrations (0.5–16 mM for
Ca2+; 0.09–8 mM for Pi) [8,34].

A gradient yield of Ca2+ and Pi was also noted for other types of CaP-containing scaffolds [35],
accompanied by the formation of an alkaline microenvironment that determines the realization of
the osteogenic potential of MSCs [36]. This potential can be realized through various mechanisms,
including CaR activity, the activation of osteoblastic differentiation and the formation of mineralization
nodules in the ECM [6]. Ca2+ and Pi upregulate the expression of OCN, Runx2 and BMP-2 [30]. Pi can
initiate signaling via extracellular signal-regulated kinases (ERK) and cAMP/protein kinase pathways,
and activation of these signaling pathways increases BMP-2 expression [37].

2.3. Expression of Osteogenic, Cytokine, and Chemokine Genes

Numerous number of genes and transcription factors are necessary for the proliferation and
differentiation of MSCs. Moreover, the individual knockout of each of these genes only partially changes
the behavior of MSCs [9]. Therefore, for the development of regenerative medicine, the molecular
basis (primarily genes and transcription factors) of the response of MSCs [10] to various stimuli must
be identified.

Correlation analysis showed that in hAMSC cultured for 14 days around samples with a microarc
CaP coating, RUNX2- BMP2- and BMP6- ALPL expressions were correlated with high coefficients
(r = 0.96; p < 0.05; n = 7) (Figure 2). However, as shown in Table 3, statistically significant upregulation
of osteogenic genes (1.4-fold that in hAMSCs cultured on plastic) was observed only for RUNX2, BMP6,
and ALPL (Table 3).
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Figure 2. Correlations (r > 0.75) between the technological coating properties and in vitro indices of
hAMSCs cultured for 14 days with the microarc CaP-coated titanium substrates.

Table 3. Relative gene expression levels (fold) in hAMSCs collected from plastic after 14 days of in vitro
coculture with the microarc CaP-coated titanium substrates, Me (Q1; Q3).

Parameters of One Surface of a Bilateral
CaP Coating on a Titanium Substrate

n = 7 1
Relative Expression of Osteogenic Genes

Ra
µm

Thickness
µm

Weight
mg hTERT RUNX2 BMP2 BMP6 BGLAP ALPL

3.1
(2.4; 3.3)

51.5
(37.0; 53.5)

13.1
(11.0; 14.4)

6.9 2

(6.4; 56.5)
1.44 2

(1.07; 1.69)
1.05

(−1.40; 1.57)
1.40 2

(1.04; 1.69)
−0.92

(−1.41; 1.69)
1.43 2

(1.03; 1.63)

Relative expression of cytokine and chemokine genes

IL-18 CXCL1 CCL27 CCL7 CXCL12 CLEC11A

−1.47 2

(−3.52; −1.22)
−1.16 2

(−1.24; −1.13)
−3.10 2

(−3.28; −1.84)
3.11 2

(2.33; 3.51)
2.24

(−3.52; 4.31)
−2.10

(−2.44; 3.79)

1 n-the number of tested samples; 2 p < 0.05 compared with cell culture without test samples according to the
Mann–Whitney U-test; (−) sign means inhibition of relative gene expression in comparison with a control cell
culture on plastic without samples; hTERT-gene of human telomerase reverse transcriptase; BGLAP-gene of bone
gamma-carboxyglutamate protein (OCN).

Notably, as indicated in Table 3, the expression of osteogenic genes began along with 7-fold
increase in the transcription of hTERT, which regulates cell proliferation. Day 14 corresponds to the
completion of the formation of three-dimensional MSC/osteoblast cell culture conditions and the
beginning of the formation of mineralization nodules.

The transcription factor Runx2 (core-binding factor subunit alpha-1=cbfa1) is considered a main
determinant of osteoblast genesis from MSCs [38]. It regulates the expression of many osteoblast genes
(ALP, OPN, OCN, and matrix metalloproteinase 13). Runx-driven osteogenesis is characterized by
sequential expression of marker molecules (BMPs, ALP, and OCN), which alone do not always lead to
mineralization of the bone matrix [12].
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ALPL gene expression occurs during the early stages of osteogenesis [12]. ALP activity is necessary
for subsequent mineralization of the ECM in the alkaline microenvironment [36] and appears within
7–14 days after contact with osteogenic scaffolds [35]. Ca2+ ions formed during degradation of
biomaterials are inducers of ALP expression [35] and the differentiation of MSCs into osteoblasts is
triggered through the expression of calcium-binding proteins [39]. In turn, an increase in the level of
ALPL gene mRNA expression ensures the presence of free Pi in the cellular microenvironment, and
this Pi binds with calcium to form CaP minerals in the bone [37].

In turn, the BGLAP gene encodes OCN, a protein that is expressed during the late stages of
osteogenesis, is a marker of the terminal differentiation of MSCs into secreting osteoblasts and is
produced during ECM mineralization [40]. The promoter of this gene is regulated by the transcription
factor Runx2 and is activated by the BMP-2 [41].

Thus, the increased expression of the hTERT, RUNX2, BMP6, and ALPL genes but not BGLAP
on day 14 of in vitro culture reflects a chain of events associated with the ongoing proliferation and
differentiation of hAMSCs into osteoblasts as well as with the early stages of ECM mineralization.
Indeed, a mineralized ECM with intense alizarin red staining was observed only by day 21 in a coculture
system containing hAMSCs and a micro-arc CaP coating [5].

Most researchers agree that osteoblasts attach more easily to surfaces with a coarse
microtopography [42,43], which may enhance osteogenic cell differentiation [44] than to those with a
smooth microtopography. Independent groups of scientists revealed that increased relative mRNA
expression levels of OPN, OCN [45], RUNX2 and ALPL [17] are associated with osteogenic activity,
and found that bone marrow MSCs cultured in vitro on rough surfaces demonstrate more intense
alizarin red staining than MSCs under similar conditions on flat [17,46] and plastic [22] surfaces. These
results may indicate that surface topography modulates the osteogenic differentiation of MSCs and the
ECM mineralization.

The results obtained by Sutherland et al. (2005) also indicate that cell attachment and proliferation
are dependent on surface topography and that the cytoskeleton exhibits higher stress levels on coarser
surfaces [47]. According to McCafferty et al. (2014), stiffness, topography, and surface chemistry
can cause cytoskeletal remodeling and focal adhesion formation prior to MSC differentiation via
integrin-mediated signaling pathways [48]. Cytoskeletal alterations can affect the organization and
distribution of organelles and DNA, which regulate the functioning and biological activity of cells [49].
Shafrir et al. (2002) showed that microfilaments cross the nuclear pores and connect to the nuclear
membrane, thereby providing a path for the transduction of signals induced by mechanical stimuli [50].

Research by McBeath and Prowse (2013) confirmed that the topography of the artificial matrix
can regulate the osteogenic differentiation of MMSCs by altering the cytoskeleton [51,52]. In addition,
research has suggested that the distribution of the actin cytoskeleton, in particular filamentous actin
(F-actin), varies on rough surfaces [53]. The actin cytoskeleton plays an important role in the osteogenic
differentiation of MSCs [54]; it is modified and changed as MSCs differentiate into osteoblasts instead
of the large number of thin, parallel microfilament bundles that propagate throughout the cytoplasm in
undifferentiated MSCs, thick bundles of actin filaments are located on the periphery of differentiated
cells [54].

Structural alterations in the cytoskeleton lead to signal transduction to the nucleus and are
associated with the activation of the nuclear transcription factors YAP (yes-associated protein 1) and
TAZ (WW domain-containing transcription regulator protein 1, WWTR1) which are regulated by
the actin cytoskeleton; this link explains the participation of mechanical stimuli in the osteogenic
differentiation of MSCs [55,56]. Yang et al. (2016) convincingly demonstrated that different surface
topographies differentially affected the activation of the transcription factors YAP/TAZ, leading to
changes in the relative expression levels of osteogenic genes [17]. In turn, the transcription factors
YAP/TAZ mediate the differentiation of MSCs by inducing the Runx2 coactivator, an osteoblast-specific
transcription factor that affects the expression of osteogenic genes [57,58].

However, we did not find that the expression of the tested osteogenic genes in a 14-day in vitro
culture of hAMSCs on plastic around samples coated by soluble microarc CaP coating was dependent
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on its physical parameters (roughness, weight, and thickness). The correlation coefficients of physical
and biological factors varied between −0.43 and 0.52. Apparently, there are other pathways leading
to activated expression of osteogenic differentiation-related genes that are not associated with CaP
surface features and poor concentrations of Ca2+ and Pi in an intercellular medium.

Considering this possibility, the negative correlation between RUNX2 mRNA expression and the
production of the osteoclastogenic macrophage colony stimulating factor (M-CSF) (r = −0.79; p < 0.05)
is interesting (Figure 2). Lienau et al. (2010) showed that hematopoietin gene expression is suppressed
during chondrogenesis and endochondral ossification but not during bone remodeling [59].

In other words, in the context of the actively developing field of osteoimmunology [60], the
osteogenic activity of numerous cytokines and chemokines [14] is noteworthy as a variation on the
cytokine/chemokine-mediated initiation of osteogenesis, constituting an alternative to the known
signaling pathways.

2.4. Cytokine and Chemokine Secretion

In our study, by the 14th day of contact with CaP-coated Ti substrates the relative mRNA expression
levels of the IL-18 gene and genes encoding some chemokines (CXCL1, CCL27) decreased significantly.
However, CCL7 activity remained elevated relative to that in hAMSCs cultured on plastic without
CaP-coated samples (Table 3).

Secretion by hAMSCs cultured for 14 days on plastic (2D control) (Table 4; abbreviations of
cytokines/chemokines are enclosed) was classified according to [61]:

High (more than 1 ng/mL) concentration of SCGF-b;
Average (0.1–1 ng/mL) concentrations of HGF and MIF;
Low (1–100 pg/mL) concentrations of IL-2Ra; IL-3; IL-12 (p40); IL-16; IL-18; IFNα2; M-CSF; β-NGF;

LIF; MCP-3 (CCL7); MIG (CXCL9); GROα (CXCL1); SCF; SDF-1α (CXCL12); TRAIL CTACK;
Minimal (<1 pg/mL) concentrations of IL-1α and TNFβ mediators;
The inflammatory biomolecules are able to regulate osteogenesis [2,14]. In the presence of samples

with a microarc CaP coating, a change in the secretory profile of hAMSCs was observed (Table 4).
Specifically, the concentrations of IL-18, GROα (CXCL1) and SCF increased significantly (p < 0.05) (by
26%, 15% and 267%, respectively). In contrast, the levels of HGF (by 44%) and LIF (by 29%) decreased.

During the formation of a microarc CaP coating, its thickness, controlled by the technological
parameters of the microarc device, determines the mass of CaP in the coating (r = 0.96; p <0.001; n = 7)
and the average surface roughness index (Ra) (r = 0.96; p < 0.001; n = 7). The tested physical properties
of the microarc CaP coating (thickness, mass, and roughness) in the 14-day hAMSC culture affected the
secretion of IL-18 (r = 0.77–0.79; p < 0.01; n = 10) and SDF- 1α (CXCL12) (r = 0.69–0.73; p < 0.02; n = 10)
(Figure 2).

Notably, the secretion of inflammatory/migratory cytokines/chemokines was in antiphase
(according to the feedback principle) with the expression of the mRNA of their genes, with the
mRNA expression of the corresponding genes, with the exception of the CLEC11A gene/SCGFb pair
(Tables 3 and 4). In turn, strong inverse correlations were found between the mRNA expression level
of IL-18 with that of ALPL (−0.79; p < 0.03; n = 7) and BMP6 (−0.82; p < 0.02; n = 7) and of BMP6 with
those of the chemotaxis-related genes CXCL1 (−0.79; p < 0.04; n = 7) and CCL27 (−0.82; p < 0.02; n = 7)
(Figure 2). According to Cornish et al. (2003), IL-18 plays a role as an autocrine/paracrine mitogen in
both osteogenic and chondrogenic cells [62] and may be a trigger of osteogenic differentiation [63].

The chemokine GROα (CXCL1), a mediator of MSC chemotaxis [64], apparently contributes to
the formation of a network of inflammatory cytokines/chemokines and one of the hematopoietic stem
cell (HSCs) growth factors (SCGF-b) (Figure 2). CXCL1, on the other hand, can induce osteoclastogenic
activity [65]. Therefore, the molecular (gene/secretory) activity of hAMSCs in a 14-day in vitro culture
(Tables 3 and 4) may indicate the end of the proinflammatory phase and a switch to regenerative
(osteogenic) processes [14], induced by the physical-chemical properties of the microarc CaP coating.
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Table 4. Secretory activity (pg/mL) of hAMSCs after 14 days of culture with the microarc CaP-coated
titanium substrates, Me (Q1-Q3).

Factors hAMSC Culture on
Plastic, n = 3

hAMSC Cultures in Contact with the
CaP-coated Titanium Substrates, n = 7

Surface parameters of a
CaP coating

Ra, µm 0 3.1 (2.4–3.3)

Thickness, µm 0 46.0 (35–53.5)

Weight, mg 0 13.0 (11.2–14.0)

Inflammatory
interleukins and

cytokines

IL-1α 0.68 (0.65–1.10) 0.77 (0.69–0.85)

IL-2Ra 17.84 (10.23–27.63) 8.48 (8.48–12.8)

IL-3 5. 54 (2.51–6.01) 3.29 (2.38–7.54)

IL-12 (p40) 14.62 (14.62–54.73) 38.79 (12.78–52.11)

IL-16 33.19 (21.52–47.69) 18.22 (15.87–26.61)

IL-18 6.40 (3.43–7.21) 8.09 * (7.53–11.13)

TNFβ 0.49 (0.42–0.82) 0.55 (0.21–0.57)

IFNα2 17.10 (17.10–18.41) 16.54 (15.91–17.45)

Growth factors
M-CSF 15.55 (13.47–19.80) 18.20 (11.42–20.03)

β-NGF 8.21 (6.55–8.61) 7.47 (5.13–8.33)

HGF 321 (299–413) 178 * (162–192)

Chemokines

LIF 14.43 (11.03–16.03) 10.30 * (9.33–10.32)

MCP-3(CCL7) 95.57 (45.26–112.16) 60.18 (57.82–66.99)

MIF 536 (405–966) 492 (254–667)

MIG (CXCL9) 12.16 (8.97–12.80) 8.97 (8.97–14.06)

GROα (CXCL1) 36.77 (35.68–38.92) 42.34 * (39.21–49.13)

SCF 3.14 (2.18–4.45) 11.49 * (6.82–11.59)

SCGF-b 12838 (11657–13045) 11629 (9997–15633)

SDF-1α (CXCL12) 81.84 (43.22–101.84) 70.37 (49.40–76.90)

TRAIL 4.04 (3.04–4.37) 3.21 (2.71–4.20)

CTACK (CCL27) 34.49 (32.30–43.92) 40.40 (40.40–58.65)

* Each measurement was done in triplicate. IL—interleukin; TNFβ—tumor necrosis factor beta; IFNα2—human
interferon α2; M-CSF—monocyte colony stimulating factor; β-NGF—beta-nerve growth factor; HGF—hepatocyte
growth factor; LIF—leukemia inhibitory factor; MCP-3—monocyte chemotactic protein-3—chemokine (C-C
motif) ligand 7 (CCL7); MIF—macrophage migration inhibitory factor; MIG—monokine induced by gamma
interferon—chemokine (C-X-C motif) ligand 9 (CXCL9); GROα—growth regulated oncogene-alpha—chemokine
(C-X-C motif) ligand 1 (CXCL1); SCF—stem cell factor; SCGFb—stem cell growth factor beta (C-type lectin domain
family 11 member A; CLEC11A) beta; SDF-1α—stromal derived factor 1 alpha—C-X-C motif chemokine 12
(CXCL12); TRAIL—tumor necrosis factor ligand superfamily member 10 (TNF-related apoptosis-inducing ligand);
CTACK—Chemokine C-C motif ligand 27.

Interestingly, increasing level of IL-18 is directly correlated with an increasing concentration of
SCF (r = 0.82; p < 0.03; n = 7), a key signaling niche molecule in HSCs [66]. Moreover, the increase in
the percentage of cells expressing hematopoietic markers CD45+34+14+20+ was correlated with an
increase in the SCF concentration in the hAMSC culture (r = 0.77; p < 0.05; n = 10) (Figure 2).

Osteoblasts form niches for HSCs including lymphoid stem cells [31]. Proinflammatory IL-18 is
likely involved in the initiation of both the osteogenic differentiation of hAMSCs and the formation of
osteoblastic hematopoietic niches. The low concentrations of potential inducer molecules in the total
volume (1.5 mL) of the culture medium should not be confusing. The local concentrations of these
factors can be extremely high near individual cells and the forming hematopoietic microterritories.
Indeed, we previously noted the association of osteogenic/hematopoietic processes in cultured hAMSCs
in contact with a microarc CaP coating for 14 days [5].

In mice, acute bone inflammation occurring within 7–14 days after injury triggers the subsequent
phase of skeletal repair, leading to fracture healing [4]. If the timely switching of the phases of
inflammation/regeneration is disrupted, including disruptions provoked by the implant, complications
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develop (e.g., infection, osteonecrosis, osteoporosis, pseudoarthrosis, and bone nonunion), making
the prognosis significantly less favorable. Curing large bone tissue defects is a major clinical problem
worldwide. Therefore, the expression of inflammatory cytokines and their receptors is of functional
importance to bone remodeling, and signaling pathway modulation is a promising strategy for
controlling bone regeneration [14]. However, the timing and mechanisms required for the induction of
the inflammatory and regenerative reactions remain unclear.

3. Material and Methods

3.1. Samples of Naterial with a CaP Coating

A bilateral CaP coating was formed on substrates (10 × 10 × 1 mm3) of commercially pure titanium
(Ti, wt.%: 99.58 Ti, 0.12 O, 0.18 Fe, 0.07 C, 0.04 N, 0.01 H) by microarc oxidation (MAO) method using
a Micro-Arc 3.0 system Institute of Strength Physics and Materials Science of the Siberian Branch of
the Russian Academy of Sciences (ISPMS SB RAS, Tomsk, Russia) in the anode mode as described
previously [33]. The electrolyte consisted of an aqueous solution of phosphoric acid (20 wt.%), calcium
carbonate (9 wt.%), and synthetic hydroxyapatite (HAP, 6 wt.%).

The roughness of the test coatings was evaluated and the average roughness index (Ra) was
determined using a Hommel-Etamic T1000 profilometer (Jenoptik, Jena, Germany) as described
previously [67]. Ten measurements were performed for each sample. An Ra range of 2.3–4.6 µm
corresponds to the biologically active range over which the relief of CaP coatings can support the
osteogenic differentiation of MSCs in vivo [68].

The coating thickness was determined from cross-sectional micrographs via scanning electron
microscopy (SEM; LEO EVO 50, Zeiss, Germany; Nanotech Center at ISPMS SB RAS, Tomsk, Russia).
The scaffold-like CaP layer generated by MAO technique contained numerous closed and branched
pores (up to 7 µm in diameter) due to the intense influence of the cascade of microarc discharges and
the local electrical breakdown of the accumulating coating.

The specimens were weighed on a digital microanalytical balance (GR-202, A&D Company, Tokyo,
Japan) before and after coating, and the bilateral coating mass was calculated.

Before biological testing, the samples were sterilized by dry heat in a Binder FD53 oven (Binder
GmbH, Tuttlingen, Germany) at 453 K for 1 h.

3.2. Human Cell Isolation

Adult hAMSCs were isolated from the lipoaspirate of a healthy man (30 years old). This study
was approved by the Local Ethics Committee of Innovation Park, Immanuel Kant Baltic Federal
University, Kaliningrad, Russia (permit no. 7; 9 December 2015). Informed consent for the procedure
was obtained as specified previously [69]. A stromal vascular fraction and a processed lipoaspirate
(PLA) with little contamination by endothelial cells, pericytes, and smooth muscle cells were obtained
as described previously [70]. Subconfluent cells from the PLA were passaged five times (with each
passage lasting 5–7 days) and cultured at 37 ◦C and 5% CO2 in nutrient medium consisting of 90%
α-MEM (Sigma-Aldrich, St. Louis, MO, USA), 10% fetal bovine serum (Sigma-Aldrich, St. Louis, MO,
USA), 0.3 g/L L-glutamine (Sigma-Aldrich, St. Louis, MO, USA), and 100 U/mL penicillin/streptomycin
(Sigma-Aldrich, St. Louis, MO, USA) to expand the hAMSC population ex vivo.

3.3. Human Cell Culture

To study 14-day cell viability, gene expression, secretion, and immunophenotype, hAMSCs were
cultured at a concentration of 5 × 104 live cells per 1.5 mL of complete nutrient medium consisting
of 90% α-MEM (Sigma-Aldrich, St. Louis, MO, USA), 10% inactivated (30 min at 56 ◦C) fetal bovine
serum (Sigma-Aldrich, St. Louis, MO, USA), 0.3 g/L L-glutamine (Sigma-Aldrich, St. Louis, MO, USA),
and 100 U/mL penicillin/streptomycin (Sigma-Aldrich, St. Louis, MO, USA). The nutrient medium was
replaced with fresh medium every 3–4 days. One CaP-coated Ti substrate was placed in the center of
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the bottom of each well of a 12-well flat-bottom plate (Orange Scientific, Braine-l’Alleud, Belgium).
Cells cultured without CaP-coated substrates served as 2D controls.

3.4. Cytokine Assay

Supernatants from 14-day cell cultures were centrifuged for 10 min at 500×g. Chemokines, growth
factors, and pro- and anti-inflammatory cytokines (LIF, SCF, SDF-1a, SCGF-b, M-CSF, MCP-3, MIF, MIG,
TRAIL, GRO-a; IL-1a, IL-2ra, IL-3, IL-12 (p40), IL-16, IL-18, HGF, TNF-b, b-NGF, IFN-a2, and CTACK)
were quantified by fluorescence flow fluorimetry using an automated Bio-Plex Protein Assay System
analyzer (Bio-Rad, Hercules, CA, USA) and a commercial test system (Bio-Plex Pro Human cytokine
Group II 21-Plex Panel, Bio-Rad, Hercules, CA, USA) in accordance with the manufacturer’s protocol.
This cytokine/chemokine profile was previously estimated as niche signal molecules while osteoblastic
differentiation of hAMSCs induced by microarc CaP-coated Ti substrates occurred in vitro [5].

3.5. Cellular Viability and Immunophenotype Analysis

To assess the viability, gene expression profile, and immunophenotype of hAMSCs adhered to the
plastic around the CaP-coated samples, cells were preliminarily harvested with 0.05% trypsin (PanEco,
Moscow, Russia) in 0.53 mM EDTA (Sigma-Aldrich, St. Louis, MO, USA) and washed twice with
phosphate-buffered saline.

The surface markers on viable hAMSCs were analyzed with a Human MSC Phenotyping Kit
(cat. no. 130-095-198, Miltenyi Biotec, Bergisch Gladbach, Germany), which detects the markers
CD14, CD20, CD34, CD45, CD73, CD90, and CD105. After a 10-min incubation with the labeled
monoclonal antibodies (mAbs), the cells were assayed using a MACS Quant flow cytometer (Miltenyi
Biotec, Bergisch Gladbach, Germany) according to the manufacturer’s protocol. The in vitro viability of
hAMSCs was also estimated with the MACS Quant flow cytometer (Miltenyi Biotec, Bergisch Gladbach,
Germany) after staining with a solution of Annexin V: FITC (Abcam, Cambridge, UK) and propidium
iodide (Abcam, Cambridge, UK) according to the manufacturer’s protocol. The flow cytometric data
were analyzed using KALUZA analysis software (Beckman Coulter, Brea, CA, USA).

3.6. Gene Expression Analysis

To assess the expression of osteogenic (hTERT, RUNX2, BMP2, BMP6, BGLAP, and ALP) and
cytokine/chemokine (IL-18, CXCL1, CCL27, CCL7, CXCL12, and CLEC11A) genes by hAMSCs, total
RNA was isolated from the obtained samples using the Extract RNA kit reagent (Eurogen, Moscow,
Russia) according to the manufacturer’s protocol. Then, the isolated total RNA was reverse transcribed
to cDNA using oligo(dT)23 primers (20 µM) (Beagle, Moscow, Russia) and MMLV reverse transcriptase
(Eurogen, Moscow, Russia).

Multiplex polymerase chain reaction (PCR) analysis was performed in triplicate using qPCRmixHS
reagents (Eurogen, Moscow, Russia), specific TaqMan probes and primers at a concentration of 10 pM
(Beagle, Moscow, Russia) in a CFX96 qPCR instrument (Bio-Rad, Hercules, CA, USA). Five microliters
of cDNA was used as the template, and the large ribosomal protein (RPLPO) gene was used as the
reference gene.

PCR results were analyzed using the second derivative maximum method. The relative expression
levels of the target genes were calculated using the modified Pfaffl formula for different amplification
efficiencies. Relative quantitative analysis (relative quantification) is based on the ratio of the expression
of the target gene to the expression of the reference gene and is largely sufficient for studying physiological
changes in gene expression levels. The following oligonucleotide primers (Beagle, Moscow, Russia)
were used (Table 5).
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Table 5. Sequences of oligonucleotide primers used in the experiment.

RUNX2_for 5′-CCAGAAGGCACAGACAGAAG-3′

RUNX2_rev 5′-GATGAGGAATGCGCCCTAAA-3′

BMP2_for 5′-ACGAGGTCCTGAGCGAGTT-3′

BMP2_rev 5′-GACCTGAGTGCCTGCGATAC-3′

BMP6_for 5′-TTACAGGAGCATCAGCACAG-3′

BMP6_rev 5′-GGAGTCACAACCCACAGATT-3′

BGP_for5′- GAGGGTATAAACAGTGCTGGAG-3′

BGP_rev5′-AATAGGGCGAGGAGTGTGA-3′

ALP_for5′-GGGAAATCTGTGGGCATTGT-3′

ALP_rev5′-GAGTACCAGTCCCGGTCAGC-3′

RPLPO_for 5′-GGCGACCTGGAAGTCCAACT-3′

RPLPO_rev 5′-CCATCAGCACCACAGCCTTC-3′

RUNX2_probe 5′-FAM-AGTTTGTTCTCTGACCGCCTCAGT–BHQ1-3′

BMP2_probe 5′-FAM-CTGAAACAGAGACCCACCCCCAGCA-BHQ1-3′

BMP6_probe 5′-FAM-CCTCAGAAGAAGGCTGGCTGGAAT-BHQ1 -3′

BGP_probe 5′-FAM-CAGCCACCGAGACACCATGAGA-BHQ1-3′

ALP_probe 5′-FAM-ACCACGAGAGTGAACCATGCCA-BHQ1-3′

RPLPO_probe Bgl635-5′-ATCTGCTGCATCTGCTTGGAGCCCA-3′-BHQ-2

3.7. Alizarin Red Staining

Osteogenic differentiation of hAMSCs cultured on plastic around the CP-coated Ti substrates was
determined as described previously [21]. To establish the self-differentiation potency of cells initiated by
a microarc CaP coating, the culture medium was not saturated by osteogenic supplements. A sample
with a bilateral microarc CP coating was placed in a plastic well of a 12-well flat-bottom plate (Orange
Scientific, Braine-l’Alleud, Belgium). hAMSCs at a final concentration of 1.5 × 105 live cells per 1.5 mL
were equally seeded on and around the test samples and were cultured in complete nutrient medium
described above (see item 3.3) at 100% humidity with 5% CO2 at 37 ◦C for 14 and 21 days. The medium
was replaced with fresh medium every 3–4 days. Cell cultures without CaP-coated Ti substrates served
as 2D controls.

Differentiated hAMSCs were stained with 2% alizarin red S (ARS, Sigma-Aldrich, St. Louis,
MO, USA) to identify mineralization of the extracellular matrix produced by osteoblasts. All staining
procedures were performed as recommended by the manufacturer. The results were assessed with a
Zeiss Axio Observer A1 microscope (Carl Zeiss Microscopy, LLC, Thornwood, NY, USA) using ZEN
2012 software (Carl Zeiss Microscopy, LLC) on plastic surfaces around the CP-coated Ti substrates. The
average areas of ARS staining (in mm2) were calculated on digital images via quantitative computer
morphometry with the help of ImageJ v. 1.43 software in each of 3–4 wells per test group.

3.8. Statistical Analysis

Descriptive statistical methods, as well as hypothesis testing methods implemented in the standard
STATISTICA for Windows 13.3 packages, were used to analyze the obtained data. The data were
tested for normality using the Kolmogorov–Smirnov criterion. The following distribution parameters
were calculated: the median (Me) and the 25% (Q1) and 75% (Q3) quartiles. To assess the statistical
significance of the differences, the nonparametric Mann–Whitney U-test was used. The relationship
between the studied parameters was established by correlation analysis (r). Differences were considered
statistically significant at a significance level of p < 0.05.
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4. Conclusions

The results of cultural and correlation analyses in our model experiment showed that for hAMSCs,
the 14th day of in vitro culture in contact with a rough microarc CaP coating is a checkpoint marking
the end of the proinflammatory phase, the completion of hAMSC proliferation accompanied by the
formation of three-dimensional MSC culture conditions, and the beginning of osteoblastic differentiation.
The increasing secretion of pleiotropic inflammatory biomolecules by the feedback principle inhibits
the expression of the corresponding genes, which may be the key step in an additional (relative to
the already known) mechanism of initiating the expression of osteogenic genes. With the expanding
network of cytokines and chemokines with osteomodulatory properties (IL-18, CXCL1), as well as
the functions of signaling molecules in hematopoietic niches (e.g., SCF), HSC microterritories are
established. According to correlation analysis, the described cellular-molecular changes may be induced
by the properties of the microarc CaP coating (roughness, primarily for cells on the CaP surface),
calcium and phosphorus ions secreted by the coating, and, to a greater extent, autocrine and paracrine
cytokines/chemokines secreted by hAMSCs. A schematic representation summarizing our general
results is shown in Figure 3.
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Figure 3. Schematic representation summarizing the main results of gene expression regulation in and
secretory activity of mesenchymal stem cells after 14 days of in vitro contact with the microarc CaP
coating on a titanium substrate. Abbreviations are presented in the text of the article and in Table 4.

To further develop the scientific foundations of bone tissue bioengineering, the differential
significance of the relief versus the solubility of microarc CaP coatings for the epigenomic regulatory
effects on MSCs must be determined. The knowledge gained can significantly improve the results
of personalized osteosynthesis using the microarc CaP-coated Ti substrates [23] to treat bone tissue
injuries and diseases.
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