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This article reviews the existing knowledge about the effects of physical exercise on nitric
oxide (NO) production in the cardiopulmonary system. The authors review the sources of
NO in the cardiopulmonary system; involvement of three forms of NO synthases (eNOS,
nNOS, and iNOS) in exercise physiology; exercise-induced modulation of NO and/or
NOS in physiological and pathophysiological conditions in human subjects and animal
models in the absence and presence of pharmacological modulators; and significance
of exercise-induced NO production in health and disease. The authors suggest that
physical activity significantly improves functioning of the cardiovascular system through
an increase in NO bioavailability, potentiation of antioxidant defense, and decrease in the
expression of reactive oxygen species-forming enzymes. Regular physical exercises are
considered a useful approach to treat cardiovascular diseases. Future studies should focus
on detailed identification of (i) the exercise-mediated mechanisms of NO exchange; (ii)
optimal exercise approaches to improve cardiovascular function in health and disease; and
(iii) physical effort thresholds.
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INTRODUCTION
Nitric oxide (NO) is a free radical with the high reactivity and dif-
fusion rate (Garthwaite et al., 1988; Archer, 1993; Brunori et al.,
2006). Direct measurements of NO content in biological tissues
are complicated due to NO binding to hemoglobin (Lundberg
et al., 1994; Griffiths et al., 2003; Brunori et al., 2006). At the same
time, NO is stable at the low concentrations ranging from 0.1 to
100 nM (Archer, 1993; Griffiths et al., 2003). Due to this, NO, syn-
thesized in the hollow organs, diffuses into the lumen where it can
be detected in the gaseous phase (Archer, 1993). Nitric oxide, syn-
thesized in the airways, can be detected in the exhaled air (Alving
et al., 1993; Lundberg et al., 1994). Nitric oxide content in the
exhaled air can characterize metabolic (Whittle, 1995) and phys-
iological conditions of the respiratory organs (Alving et al., 1993;
Barnes and Kharitonov, 1996; Dweik et al., 1998).

Nitric oxide is produced by various cells (Archer, 1993; Bauer
et al., 1994, p. 62). Numerous studies suggest that NO synthe-
sis depends on physical stimuli that modulate the activity of
NO synthases (NOS) (Laughlin et al., 2001; Gielen et al., 2005;
Park et al., 2012). Three isoforms of NOS were identified: neu-
ronal (nNOS), macrophage or inducible (iNOS), and endothelial
(eNOS) isoforms encoded by distinct genes (Ricciardolo, 2003;
Garcia, 2011).

Available literature presents controversial data on exercise-
induced changes in eNOS expression.

There is evidence that 24-week course of swimming exercise
does not change expression of eNOS protein in healthy mice

(Pellegrin et al., 2011). On other hand, swimming exercise
increases eNOS expression at the protein level in mice prone to
hypercholesterolemia and atherosclerosis (Pellegrin et al., 2007,
2011). Moreover, eNOS protein expression and phosphorylation
is increased in porcine coronary arteries in the models of chronic
coronary occlusion and stenosis (Heaps et al., 2006). Coronary
artery disease (CAD) patients, subjected to bicycle ergome-
ter exercise, have twice higher levels of eNOS protein expres-
sion and phosphorylation compared with CAD patients with
sedentary lifestyle (Hambrecht et al., 2003; Gielen et al., 2010).
Other data demonstrate that exercise stimulates endothelium-
dependent relaxation of collateral coronary arteries and arterioles
in healthy animals. This effect is associated with increases in
eNOS expression at the mRNA and protein levels (Laughlin et al.,
2001). Exercise effects on vascular endothelium are mediated by
stepwise increase in shear stress. An increase in the shear stress
is caused by elevation of cardiac output during physical exer-
cise (Persson et al., 1993). Signaling in the endothelial surface,
exposed to the vascular lumen, is triggered by deformation of
glycocalyx (Reitsma et al., 2007).

Exercise does not significantly affect nNOS in spontaneously
hypertensive rats (Park et al., 2012). In patients with chronic
heart failure, exercise decreases the expression of cytokines and
iNOS in the muscular biopsies (Kingwell, 2000; Boo and Jo,
2003). The effects of physical exercise on iNOS and nNOS are still
poorly understood. Many questions on how exercise modulates
the activity of NOS isoforms remain unresolved.
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SOURCES OF NITRIC OXIDE IN CARDIOPULMONARY SYSTEM
Nitric oxide is detected in the exhaled air (Alving et al., 1993;
Lundberg et al., 1994). However, the sources of NO in the exhaled
air have not been clearly identified. Nitric oxide can be pro-
duced by various cells present in the lungs (Spriestersbach et al.,
1995) including epithelial, neural, inflammatory (macrophages,
neutrophils, and mast cells) (Gaston et al., 1994), and vas-
cular endothelial cells (Ignarro et al., 1987; Garthwaite, 2008)
(Figure 1). Significant portion of the exhaled NO is produced by
the endothelium of the microvessels and pulmonary blood ves-
sels and alveolar epithelium (Kharitonov et al., 1996; Dweik et al.,
1998).

Nitric oxide can be also transported to the lungs by blood flow
(Gaston et al., 1994). After release of NO into the blood stream,
NO binds to hemoglobin and then it is delivered to the alveoli
(Lundberg et al., 1994; Green et al., 2011). Due to a high diffusion
ability (diffusion coefficient is approximately 3300 μm2/s), NO
easily diffuses into the gaseous phase of the lungs (Ricciardolo,
2003).

The exhaled NO level is lower in patients with coronary
insufficiency compared with healthy individuals (Sumino et al.,
1998; Clini et al., 2000). Exercise stimulates NO release from
the endothelial cells (Moncada, 1997). Regular exercises improve
functioning of the blood vessels and contribute to the better
myocardial perfusion and contractile function in subjects with
vascular diseases (Hambrecht et al., 2000, 2003; Xie et al., 2012).
However, despite obvious benefits of physical training, the main
exercise-mediated mechanisms involved in the improvement of
the vascular function in coronary artery disease have not been
clearly identified.

Nitric oxide exchange occurs in the alveoli and other parts
of the airways and significantly depends on the exhaled air flow
(Silkoff et al., 1997; Tsoukias et al., 1998). The latter complicates
the interpretation of NO oscillations in the exhaled air in various
clinical and physiological conditions (Tsoukias and George, 1998;
Shin et al., 2001, 2002; Tsoukias et al., 2001).

Nitric oxide diffuses from the endothelial cells into the vascu-
lar smooth muscle cells where this molecule activates guanylate
cyclase producing cyclic guanosine-3,5-monophosphate (cGMP)
from GTP. cGMP is a second messenger whose important effect

FIGURE 1 | Main cell types involved in NO production in the

cardiopulmonary system.

consists in the relaxation of the blood vessels (Vallance and Chan,
2001). Liao et al. (1999) studied the processes of endothelial NO
diffusion into the adjacent smooth muscle cells of the porcine
pulmonary blood vessels. These researchers hypothesized that
hemoglobin binds almost all available NO. They also showed that
erythrocytes do not disrupt NO-mediated vasodilation in the iso-
lated microvessels when the intravascular blood flow is preserved.
Therefore, the erythrocytes are not scavengers of NO in the given
conditions (Liao et al., 1999). Vaughn et al. (2000) demonstrated
that limited transmembrane diffusion decreases NO absorption
by the erythrocytes.

At the same time, the erythrocytes contribute to the NO-
mediated vasodilation in the absence of intravascular blood flow.
Kleinbongard et al. (2006) provided evidence of eNOS presence in
human and murine erythrocytes suggesting a possibility for NO
syntheses from L-arginine by the erythrocytes. Possible sources
of vasoactive NO comprise S-nitrosohemoglobin (SNOHb) and
nitrite. However, there is a lack of convincing data on how NO
or its equivalents are transported to a vascular wall from either
source: SNOHb or nitrites (Robinson and Lancaster, 2005). Nitric
oxide can be directly released from the erythrocytes into the
extracellular space or be formed outside erythrocytes from an
intermediate product generated during reaction between nitrite
and deoxyhemoglobin (nitrite-deoxyHb reaction) (Kim-Shapiro
et al., 2005; Crawford et al., 2006). Studies demonstrated that
redox-active thiols, abundant in blood plasma, can bind NO and
transport it in the form of bioactive S-nitrosothiols (RSNOs) in
the bloodstream (Stamler et al., 1992a). In the presence of oxygen,
S-nitroso-albumin (SNOAlb) is considered to be main product of
NO binding (Stamler et al., 1992b; Marley et al., 2001). However,
mechanisms of formation and release of NO from SNOAlb and
other RSNOs in vivo remain completely unclear (Rassaf et al,
2002).

NITRIC OXIDE SYNTHASES
eNOS
Endothelial NO synthase (eNOS) is a membrane-bound isoform
of the enzyme localized in the caveolae, small invaginations of
plasma membrane containing transmembrane protein caveolin
(Ricciardolo, 2003; Förstermann and Sessa, 2012). eNOS is found
in the lungs, trachea (Zhan et al., 2003), alveolar and bronchial
epithelial cells (Pechkovsky et al, 2002), alveolar macrophages
(Shaul et al., 1994; Giaid and Saleh, 1995; Aminuddin et al.,
2013), vascular smooth muscle cells (Zhan et al., 2003), pul-
monary endothelium, and endothelial cells of the blood vessels
feeding the airways (Curzen et al., 1996; Patel et al., 1999).
Immunohistochemistry approaches enabled researchers to show
that eNOS is localized in the respiratory ciliated epithelium. This
enzyme is present in the basal bodies of the cilia and increases
the ciliary beat frequency (Zhan et al., 2003). eNOS is a calcium-
dependent isoform producing discrete NO quanta (Patel et al.,
1999). The activity of eNOS is suppressed when the enzyme
binds to caveolin in the endothelial cells. In the presence of
the agonist-induced Ca2+ currents, eNOS binds to calmodulin
and dissociates from caveolin. Synthesis of NO by the com-
plex of eNOS-calmodulin continues until the Ca2+ currents have
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decreased and the inhibitory eNOS-caveolin complex has formed
(Michel and Feron, 1997). Nitric oxide, synthesized by eNOS, is
involved in the regulation of arterial blood pressure and airway
lumen diameter (Whittle, 1995).

nNOS
Neuronal NO synthase (nNOS) is a soluble cytosolic isoform of
NO synthase (NOS) (Ricciardolo, 2003). nNOS is found in differ-
ent cells present in the lungs including neuronal (Tzao et al., 2000;
Lührs et al., 2002), epithelial (Belvisi et al., 1995), and endothelial
cells (Shaul et al., 1994; Aminuddin et al., 2013). The presence
of nNOS in the nerve fibers is demonstrated by immunohisto-
chemistry and NADPH-diaphoresis histochemistry (Fischer et al.,
2002).

In the peripheral blood vessels of the lungs, smooth muscles
are innervated by the NO-ergic nerves, i.e., the nerves that express
nNOS and therefore generate and release NO. Nitric oxide, pro-
duced by nNOS in the NO-ergic nerves, can be considered as a
neurotransmitter stimulating NO-sensitive guanylate cyclase in
different types of smooth muscle cells of the blood vessels and air-
ways (Ward et al., 1995; Patel et al., 1999; Förstermann and Sessa,
2012). Similarly to eNOS, nNOS requires calcium ions to produce
NO (Whittle, 1995).

iNOS
According to current knowledge, inducible NO synthase (iNOS)
is present in the macrophages and other cells present in the lungs
(Fischer et al., 2002). In particular, iNOS is expressed in the
epithelial cells of human airways (Guo et al., 1995; Pechkovsky
et al, 2002), type II alveolar epithelium, pulmonary endothe-
lium (Aminuddin et al., 2013), lung fibroblasts (Romanska et al.,
2002), bronchial and vascular smooth muscle cells (Xue and
Johns, 1996), must cells (Gilchrist et al., 2002), endothelial cells
(Ermert et al., 2002), chondrocytes, and neutrophils (Blackford
et al., 1994). Similarly to nNOS, iNOS is a soluble cytosolic
protein (Ricciardolo, 2003).

Unlike eNOS and nNOS, iNOS is Ca2+-independent enzyme
that generates NO more abundantly (nanomolar and micromolar
concentrations) compared with other NOS isoforms and main-
tains NO production for hours and days (Ricciardolo, 2003).
A large number of studies (Pautz et al., 2010; Cortese-Krott
et al., 2014) demonstrated that iNOS can produce nitric oxide in
micromolar concentrations. These high levels of iNOS-derived
nitric oxide have been shown to be involved in pathological con-
ditions, e.g., the blood pressure fall in septic shock as well as
in the pathogenesis of chronic inflammatory diseases, including
atherosclerosis. Inducible NOS is controlled at the pretranslational
level. iNOS upregulation is triggered by the proinflammatory
cytokines: tumor necrosis factor (TNF)-α, interferon (INF)-γ,
and interleukin (IL)-1β (Morris and Billiar, 1994). Increase in the
production of NO by iNOS is observed in response to the endo-
toxins (Michel and Feron, 1997). Activation of iNOS is triggered
by the pathophysiological events associated with inflammation
(Whyte and Laughlin, 2010). Cytokine-induced stimulation acti-
vates iNOS in different cell types (Ito et al., 2013) except human
bronchial smooth muscle cells (Förstermann et al., 1994; Patel
et al., 1999; Maarsingh et al., 2009). High expression of iNOS

in the presence of inflammation is documented in the murine
bronchial smooth muscle cells (Kane et al., 1994; Maarsingh et al.,
2009).

EXERCISE-INDUCED MODULATION OF NO PRODUCTION
The extensive evidence points to the fact that exercise stimulates
NO release. This explains why regular physical activity can slow
down, suppress, or even reverse cardiovascular diseases (Alving
et al., 1993; Carrizzo et al., 2013). However, literature also presents
contradicting data suggesting that both NOS activity and NO
production decrease in response to exercise (Miyauchi et al.,
2003).

EXERCISE-INDUCED MODULATION OF NO PRODUCTION IN
ANIMAL STUDIES
Exercise modulates both the activity of eNOS and the expression
of this enzyme at the mRNA and protein levels in the cells of aorta,
heart, lung, and vena cava (Dao et al., 2011).

In vivo studies demonstrated the presence of exercise-mediated
activation of Ca2+-dependent eNOS in murine lungs, aorta, and
atria. Moreover, eNOS expression increases in the cells of car-
diopulmonary system in laboratory animals (Tatchum-Talom
et al., 2000). Physiological adaptation to swimming exercise
potentiates acetylcholine-induced relaxation of blood vessels and
nNOS activation in the endothelial cells of the lungs, atria, and
aorta (Tatchum-Talom et al., 2000).

Many studies demonstrated that NO synthesis in the endothe-
lial cells largely depends on the level of the individual physical
activity. For example, exercise-induced relaxation of the collat-
eral coronary arteries is associated with the increased expression
of eNOS mRNA and protein in healthy animals (Sessa et al.,
1994; Laughlin et al., 2001). Expression of eNOS mRNA is signifi-
cantly higher in the lungs of animals subjected to physical exercise
compared with resting animals. Western blot analysis demon-
strated that eNOS is downregulated whereas iNOS is unchanged
in the pulmonary tissue after exercise (Miyauchi et al., 2003). In
porcine coronary arteries, the levels of both unphosphorylated
and phosphorylated (Ser1179) eNOS increase after exercise in the
model of chronic coronary occlusion/stenosis (Heaps et al., 2006).
Hambrecht and coworkers demonstrated healing effects of exer-
cise in patients with coronary artery disease. The study suggested
that these beneficial effects are mediated through an increase in
iNOS phosphorylation by protein kinase Akt (protein kinase B)
(Hambrecht et al., 2003). Akt-kinase and AMP-activated pro-
tein kinase play a pivotal role in the phosphorylation of arterial
eNOS at Ser1177 residue during running exercise (Zhang et al.,
2009). Moien-Afshari et al. (2008) showed that seven-week phys-
ical training increases the level of eNOS phosphorylation in the
cells derived from aorta of wild-type and diabetic rats (Patel et al.,
1999). The increase in eNOS phosphorylation is considered to
be an important molecular mechanism of adaptation to physical
exercises (Shaul et al., 1994).

Data demonstrated that physical exercise decreases expres-
sion of iNOS at the mRNA and protein levels in the cells of
blood vessels (Gielen et al., 2005). There is evidence that an
increase in iNOS expression can occur under the influence of
Toll-like receptors type 4 (TLR-4) through the activation of
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nuclear transcription factor-kappa B (NF-kB). The levels of TLR-
4 and iNOS mRNAs increase after physical activity. Therefore,
TLR-4 activation, mediated by NF-kB-dependent pathway, trig-
gers the mechanisms of NO synthesis that can negatively affect
myocardium in case of strenuous physical activity (Cristi-
Montero et al., 2012).

IMPACT OF PHARMACOLOGICAL MODULATION DURING
PHYSICAL EFFORTS IN TRAINING
Angelis with coworkers studied rats with normal blood pres-
sure and hypertension caused by NOS blockage with N(omega)-
nitro-L-arginine methyl ester. The study showed that exercise
increases arterial blood pressure, heart rate, and cardiac output
in normotensive rats. In hypertensive animals, physical exercise
increases heart rate without affecting cardiac output, arterial
blood pressure, and blood flow and is associated with a sig-
nificant increase in arteriovenous oxygen gradient. Therefore,
hypertension, associated with abnormal NO production, induces
different cardiovascular adjustments to exercise (De Angelis et al.,
2006).

In ovine pulmonary circulation system, vascular tone increases
in response to α- and β-adrenergic stimulation present in exer-
cise. The increase in NO production contributes to a significant
decrease in α-adrenergic constriction of the pulmonary arter-
ies during physical activity and dilates pulmonary blood vessels
at rest (Kane et al., 1994). Experiments on sheep, subjected to
physical exercise, demonstrated that intravenous infusion of L-
arginine, a substrate for NO synthesis, reverses the effect of
NO-synthase inhibition without affecting the tone of the pul-
monary blood vessels (Koizumi et al., 1994). Similar responses to
moderate/heavy exercise can be found in humans with preserved
endothelial function (Green et al., 2011).

Exercise affects endothelium-independent relaxation in
response to NO donor sodium nitroprusside. Therefore, NO-
stimulated cGMP/PKG cascade in the smooth muscle cells of
arterioles is not disrupted by physical exercise (Thengchaisri
et al., 2007).

HUMAN STUDIES
A vast pool of data suggests that exercise modulates NO synthesis
in various tissues through altering NOS activity (Laughlin et al.,
2001; Boo and Jo, 2003; Gielen et al., 2005; Park et al., 2012).
Nitric oxide clearly affects physiological functions in exercise
(Sheel et al., 1999). However, phenomenology and mechanisms
of the exercise-induced effects on NO production remain largely
unclear. Biological sample acquisition from humans subjected to
physical exercise is challenging. In human studies, the changes
in NO production are predominantly evaluated based on the
measurements of NO content in the exhaled air.

Changes in NO content in the exhaled air have been demon-
strated in many studies. Majority of the studies revealed a
decrease in NO content in the exhaled air after physical exer-
cise (Maroun et al., 1995, p. 102). However, available literature
also presents data suggesting that physical training is associated
with an increase in NO content in the exhaled air (Bauer et al.,
1994; Bonsignore et al., 2001) or its invariance (Iwamoto et al.,
1994; Maroun et al., 1995). This controversy is unsurprising due

to the complexity of NO exchange and multisystemic nature of
the physiological responses to physical exercise.

The concentration of NO in the exhaled air significantly
decreases after exercise (Kippelen et al., 2002; Mantione et al.,
2007). After training workout, NO levels in the exhaled air are sig-
nificantly lower in the subjects who continue moving compared
with those fully resting. These data suggest that NO content varia-
tions in the exhaled air depend on the individual levels of physical
activity (Mantione et al., 2007).

Data show a small decrease in NO content in the exhaled air
3 min after exercise (St Croix et al., 1999). Measurements of NO in
trained athletes before and after workout demonstrate a decrease
in NO content in the exhaled air after exercise (Verges et al., 2005,
2006). At the same time, strenuous exercise potentiates NO diffu-
sion from the pulmonary tissue to the gaseous phase (Shin et al.,
2003).

Data suggest that NO synthesis in the pulmonary tissue
depends on the oxygen content (Mantione et al., 2007). Decrease
in NO concentration in the exhaled air suggests high NO uti-
lization. Partial pressure decrease after physical exercise attenu-
ates NOS activity in the NO-producing cells (Mantione et al.,
2007). In humans, the exhaled NO level directly correlates with
the exhaled oxygen level particularly in case of hypoxia (Verges
et al., 2005). Moreover, there is a direct correlation between
iNOS activity and oxygen concentration (Dweik et al., 1998).
Reactive oxygen species play an important role in the pathophys-
iological processes in cardiovascular system (Faraci, 2006). It is
interesting that H2O2 potentially mediates vascular adaptation
during exercise (Sindler et al., 2009). Moreover, NO production
by the capillary endothelium controls oxygen consumption by
the mitochondria through chemical interaction between NO and
iron-sulfur centers of the enzymes (Shen et al., 1995). Aerobic
exercise increases eNOS expression at mRNA and protein lev-
els in patients with CAD (Hambrecht et al., 2003). Similar
results were obtained in pulmonary arteries from pigs (Johnson
et al., 2001) and spontaneously hypertensive rats (Ma and Zhao,
2014). Jones and colleagues report that NOS inhibition by L-
NAME significantly increases the absorption rate of pulmonary
oxygen (VO2) in humans subjected to moderate cyclic exer-
cise. In the beginning of moderate exercise, the internal inertia
of oxidative metabolism can lead to the competitive inhibition
of VO2 by NO in the mitochondrial cytochrome c oxidase.
However, understanding of the detailed mechanisms of how L-
NAME affects VO2 kinetics requires further studies (Jones et al.,
2003).

Six-month exercise training reduces arterial pressure and is
associated with an increase in nitrite/nitrate oxide contents in
older women (Zaros et al., 2009). At the same time, when
present in the blood stream, NO binds to hemoglobin that car-
ries and metabolizes this molecule (Kosaka, 1999; Liao et al.,
1999; Veeramachaneni et al., 1999; Gladwin et al., 2000; Taylor-
Robinson, 2000). Progression of NO-hem complex formation
in vivo is a rapidly reversible process (Gladwin et al., 2000; Taylor-
Robinson, 2000). In the presence of low blood oxygenation,
hemoglobin releases NO due to lower affinity to this molecule
particularly in the venous blood (Kosaka, 1999; Taylor-Robinson,
2000).
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MECHANISMS UNDERLYING EXERCISE-INDUCED NO
PRODUCTION
In the presence of physical exercise, physical and chemi-
cal stimuli control NO production. In the endothelial cells,
exercise stimulates NO synthesis through chemical mecha-
nisms (Garcia, 2011). Chemical mechanisms involve interaction
of endogenous/exogenous agonists (acetylcholine, bradykinin,
and ATP) with the specific receptors on the endothelial cells.
Evidence suggests that physical exercise stimulates release of these
molecules. In exercise, the efferent nerve neuromuscular junc-
tions are the physiological source of acetylcholine (Kingwell,
2000). Erythrocytes have been shown to release ATP in response
both to low erythrocyte hemoglobin oxygen saturation (SO2)
(Dietrich et al., 2000; Ellsworth et al., 2009) and to increased
shear stress on the erythrocyte membrane (Wan et al., 2008).
Interstitial bradykinin content is increased in the muscle con-
traction during strenuous exercise (Langberg et al., 2002). In the
circumflex coronary artery, physical activity moderately increases
the adenosine-stimulated NO production. A NOS inhibitor,
L-NAME, moderately attenuates arteriolar dilatation in response
to NOS activation in animals subjected to exercise (Thengchaisri
et al., 2007).

According to data of Calvert and coworkers, β3-adrenoceptors
play critical role in the regulation of phosphorylation (activa-
tion) of eNOS and NO generation in response to exercise. Trained
mice have the increased NO production and levels of nitrates and
nitrosothiols in the heart (Calvert et al., 2011).

Physical impact on the vascular wall stimulates NO release in
the blood vessels (Persson et al., 1993). The hypothetical physical
stimulus affecting NO synthesis is the shear stress i.e., the friction
force between fluid layers flowing at different speed. Human and
animal studies suggest that exercise-induced cardiac output eleva-
tion contributes to the increased shear stress in the blood vessels
(Persson et al., 1993). The increased exercise-induced shear stress,
in turn, stimulates the release of vasorelaxation factor (NO) and
augments eNOS and nNOS expression (Whyte and Laughlin,
2010).

Mechanisms of the shear stress-induced NO synthesis are
not completely understood. It is known that the endothelial
cells express mechanoreceptors directly activating G-proteins, ion
channels, and enzymes such as protein kinases and phosphatases
generating second messengers (cGMP) (Zhan et al., 2003; Gielen
et al., 2010). Blood flow delivers shear force to the vascular wall,
causes deformation of the endothelial cells, and activates NO-
cGMP-dependent signaling system (Barnes and Belvisi, 1993)
(Figure 2). Vasodilation, triggered by shear stress, in the pul-
monary blood vessels is less understood compared with that in
the peripheral circulation. Pulmonary vascular reactions, associ-
ated with the changes in the exhaled NO content, remain under
discussion (Sheel et al., 1999).

Shear stress stimulates the endothelium-dependent produc-
tion of reactive oxygen species (ROS) that plays an important
role in the cardiovascular system. Indeed, superoxide and hydro-
gen peroxide (H2O2) at low concentrations function as signaling
molecules (Drouin et al., 2007; Larsen et al., 2008; Drouin and
Thorin, 2009). Activation of eNOS can be caused by these ROS
(Laurindo et al., 1994). Shear stress-induced NO production is

FIGURE 2 | NO-dependent pathways involved in shear stress-induced

vascular dilatation.

accompanied by the expression of extracellular superoxide dismu-
tase (SOD) catalyzing the rapid dismutation of superoxide into
hydrogen peroxide and molecular oxygen (Gielen et al., 2010).
Hydrogen peroxide then diffuses through the vascular wall and
increases eNOS expression and activity (Drummond et al., 2000;
Cai et al., 2001). Therefore, increased SOD1 and SOD3 expression
potentiates the exercise-induced eNOS expression through hydro-
gen peroxide. On the other hand, eNOS expression is not elevated
in catalase transgenic mice (Rush et al., 2003). Moreover, NO
can directly interact with the mitochondrial ROS generated by
NAD(P)H oxidase (NOX) and xanthine-oxidase (XO) (Gliemann
et al., 2014).

SIGNIFICANCE
Evidence suggests that physical activity alters NO production in
diseases. Nitric oxide protects pulmonary tissues in asthmatic
patients during exercise. A bronchoprotective role of NO was
initially demonstrated by the study with an inhalation of NOS
inhibitor, NG-Methyl-L-arginine (Suman and Beck, 2002). In
the pulmonary rehabilitation of patients with moderate chronic
obstructive pulmonary disease, improved exercise tolerance can
be attributed to an increase in the exhaled NO concentration.
Exhaled NO content can represent a useful pathophysiological
marker of adaptation to training in these patients (Clini et al.,
2001).

Exercise protects the endothelium continuity through the
increase in NO production (Xie et al., 2012). When individuals
with preserved endothelial function are subjected to moder-
ate/heavy exercise, L-arginine does not affect pulmonary vascular
tone, but reverses the effects of NO-synthase inhibition (Green
et al., 2011). Physical exercise structurally and functionally bene-
fits the blood vessels and, in particularly, vascular endothelium
both in healthy subjects and individuals with abnormal NO-
induced vasorelaxation (Green et al., 2004). Exercise efficacy
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depends on training amount and effort/intensity. Short exer-
cise rapidly increases biological activity of NO (Wei Xie et al.,
2012) whereas prolonged training causes NO-dependent arterial
remodeling and normalization of shear stress response (Maiorana
et al., 2003). These, in turn, eliminate need for continuous func-
tioning of NO-dependent systems to maintain vasodilation.

Physical activity significantly improves functioning of the car-
diovascular system through the increase in NO bioavailability,
potentiation of antioxidant defense, and decrease in the expres-
sion of ROS-forming enzymes (Rush et al., 2005). Regular exercise
is a useful tool to fight cardiovascular diseases. Future studies
should focus on identification of exercise approaches optimal
for achieving the increased NO bioavailability and improved
cardiovascular function (Gliemann et al., 2014).

CONCLUSIONS
Existing data on exercise-mediated mechanisms of NO produc-
tion in the cardiopulmonary system remain controversial. Nitric
oxide is produced by various cell types including those present in
the blood vessels. All these cells are potential sources of NO in the
exhaled air. According to a vast pool of data, exercise controls NO
synthesis through modulation of NOS activity (Laughlin et al.,
2001; Boo and Jo, 2003; Gielen et al., 2005; Park et al., 2012). In
response to exercise, the exhaled NO content increases, decreases,
or remains unchanged depending on the presence of local factors.
These factors comprise the levels NOS expression and activity,
severity of oxidative stress, NO binding to antioxidant molecules
hemoglobin and glutathione (Ricciardolo, 2003), and individual
pattern of physical activity (Sessa et al., 1994; Laughlin et al.,
2001). Evidence suggests the possible existence of the exercise
amount/effort thresholds pivotal for the regulation of NO pro-
duction. However, precise identification of these physical effort
thresholds requires further studies (Garcia, 2011).
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