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Abstract: Na+,K+-ATPase is the only known receptor of cardiotonic steroids (CTS) whose interaction
with catalytic α-subunits leads to inhibition of this enzyme. As predicted, CTS affect numerous cellular
functions related to the maintenance of the transmembrane gradient of monovalent cations, such as
electrical membrane potential, cell volume, transepithelial movement of salt and osmotically-obliged
water, symport of Na+ with inorganic phosphate, glucose, amino acids, nucleotides, etc. During the
last two decades, it was shown that side-by-side with these canonical Na+

i/K+
i-dependent cellular

responses, long-term exposure to CTS affects transcription, translation, tight junction, cell adhesion
and exhibits tissue-specific impact on cell survival and death. It was also shown that CTS trigger
diverse signaling cascades via conformational transitions of the Na+,K+-ATPase α-subunit that, in turn,
results in the activation of membrane-associated non-receptor tyrosine kinase Src, phosphatidylinositol
3-kinase and the inositol 1,4,5-triphosphate receptor. These findings allowed researchers to propose
that endogenous CTS might be considered as a novel class of steroid hormones. We focus our review
on the analysis of the relative impact Na+

i,K+
i-mediated and -independent pathways in cellular

responses evoked by CTS.

Keywords: cardiotonic steroids; Na+,K+-ATPase; transcription; translation; proliferation; adhesion;
cell death

1. Introduction

Data on the beneficial effect of extracts from the leaves of Digitalis purpurea and Digitalis lanata
in the treatment of heart failure published more that 200 years ago led to the isolation of digitoxin
and digoxin, i.e., the first members of plant-derived cardiotonic steroids (CTS) known as cardenolides.
Later on, other members of the CTS superfamily, bufadienolides, were isolated from amphibians.
All of these compounds share a common structure formed by a steroid nucleus with a lactone ring at
C-17 and a hydroxyl group at C-14. The five-membered and six-membered lactone rings are the most
essential feature of cardenolides and bufadienolides, respectively (Figure 1). In 1938, Wood and Moe
reported that treatment with cardenolides caused the accumulation of Na+ and loss of K+ in the canine
ventricular musculature [1]. Fifteen years later, Schatzmann demonstrated that in human erythrocytes,
these compounds inhibit energy-dependent accumulation of K+

o and extrusion of Na+
i [2]. Finally,

two years after the discovery of Mg2+-dependent (Na+,K+)-stimulated adenosine triphosphatase
(Na+,K+-ATPase) [3], Jens Skou reported that CTS completely suppressed the enzyme’s activity [4].
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During the last two decades, several cardenolides and bufadienolides identified in mammals (Figure 1)
were defined as endogenous CTS (for a review, see [5–9]).

Molecules 2017, 22, 635 2 of 26 

 

decades, several cardenolides and bufadienolides identified in mammals (Figure 1) were defined as 
endogenous CTS (for a review, see [5–9]). 

 
Figure 1. CTS identified in mammalian tissues. 

As predicted, exposure to CTS affects numerous cellular functions related to Na+,K+-ATPase 
activity and the maintenance of the transmembrane gradient of monovalent cations, such as electrical 
membrane potential (Em), cell volume, transepithelial movement of salt and osmotically-obliged water, 
Na+/H+ and Na+(K+)/Ca2+ exchange, symports of Na+ with inorganic phosphate, glucose, amino acids, 
nucleotides, etc. During the last two decades, it was shown that side-by-side with the above-listed 
cellular responses, CTS affect diverse non-canonical signaling pathways involved in the regulation of 
gene expression, membrane trafficking, cell adhesion, proliferation and death. Based on these findings, 
several research teams proposed that endogenous CTS might be considered as a novel class of steroid 
hormones [10–14]. Figure 2 shows that these cellular responses in CTS-treated cells might be mediated 
by unknown signaling pathways triggered by elevated [Na+]i (pathway S1) or attenuated [K+]i 
(pathway S2). These signals can be also evoked by conformational transition of the Na+,K+-ATPase that, 
in turn, triggers intracellular signals independently of the dissipation of transmembrane gradients of 
monovalent cations (pathway S3) or on the background of altered intracellular milieu caused by 
Na+,K+-ATPase inhibition and elevation of the [Na+]i/[K+] ratio (pathway S4). Finally, signals might be 
also generated by the interaction of CTS with targets distinct to the Na+,K+-ATPase (pathway S5). We 
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responses triggered by CTS. Data on the physiological and pathophysiological implications of 
endogenous CTS obtained in experiments with anti-CTS antibodies and transgenic mice were out of 
the scope of our mini-review and subjected to detailed analysis elsewhere [8,9,13,15–17]. 

Figure 1. CTS identified in mammalian tissues.

As predicted, exposure to CTS affects numerous cellular functions related to Na+,K+-ATPase
activity and the maintenance of the transmembrane gradient of monovalent cations, such as electrical
membrane potential (Em), cell volume, transepithelial movement of salt and osmotically-obliged
water, Na+/H+ and Na+(K+)/Ca2+ exchange, symports of Na+ with inorganic phosphate, glucose,
amino acids, nucleotides, etc. During the last two decades, it was shown that side-by-side with
the above-listed cellular responses, CTS affect diverse non-canonical signaling pathways involved
in the regulation of gene expression, membrane trafficking, cell adhesion, proliferation and death.
Based on these findings, several research teams proposed that endogenous CTS might be considered as
a novel class of steroid hormones [10–14]. Figure 2 shows that these cellular responses in CTS-treated
cells might be mediated by unknown signaling pathways triggered by elevated [Na+]i (pathway S1)
or attenuated [K+]i (pathway S2). These signals can be also evoked by conformational transition
of the Na+,K+-ATPase that, in turn, triggers intracellular signals independently of the dissipation
of transmembrane gradients of monovalent cations (pathway S3) or on the background of altered
intracellular milieu caused by Na+,K+-ATPase inhibition and elevation of the [Na+]i/[K+] ratio
(pathway S4). Finally, signals might be also generated by the interaction of CTS with targets distinct to
the Na+,K+-ATPase (pathway S5). We focus our review on the analysis of the relative contribution
of these signaling pathways in cellular responses triggered by CTS. Data on the physiological and
pathophysiological implications of endogenous CTS obtained in experiments with anti-CTS antibodies
and transgenic mice were out of the scope of our mini-review and subjected to detailed analysis
elsewhere [8,9,13,15–17].
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Figure 2. Intracellular signaling pathways triggered by CTS. 1, Na+,K+-ATPase; 2, CTS target(s) distinct 
from the Na+,K+-ATPase α-subunit; S1–S5, downstream signaling pathways. Different shapes of CTS 
targets (1 and 2) reflect their conformational transitions. For more details, see the text. 
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detected in all types of animal cells. In accordance with the Albers–Post model, ATP hydrolysis by 
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for the delivery, conformational stability and enzymatic activity. The 8-kD γ-subunit detected in 
highly-purified Na+,K+-ATPase from the kidney, as well as the other six members of the FXYD family 
sharing the Pro-Phe-X-Tyr-Asp motif also contribute to the enzyme activity regulation. For more 
details, see [15,18,19]. 
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2. Na+,K+-ATPase as a CTS-Sensitive Ion Pump

Na+,K+-ATPase is an integral plasma membrane protein consisting of α- and β-subunits and
detected in all types of animal cells. In accordance with the Albers–Post model, ATP hydrolysis by
the larger α-subunit (~110 kD) leads to phosphorylation of the Asp369 residue that provides E1-E2

conformational transition and electrogenic ion transport (3Na+ vs. 2K+) at a baseline rate of 60–80
phosphorylation-dephosphorylation cycles per second. In addition to the ubiquitous α1-isoform,
three other Na+,K+-ATPase α-subunits were detected by screening c-DNA libraries. These isoforms are
expressed in a tissue-specific manner with high abundance in neuronal cells (α3 and α2), astrocytes and
heart (α2), skeletal muscle (α3, α2), and testis (α4). Four isoforms of β-subunits encoding an ~35-kD
protein have been demonstrated in mammals. All of them are highly glycosylated and are obligatory
for the delivery, conformational stability and enzymatic activity. The 8-kD γ-subunit detected in
highly-purified Na+,K+-ATPase from the kidney, as well as the other six members of the FXYD family
sharing the Pro-Phe-X-Tyr-Asp motif also contribute to the enzyme activity regulation. For more
details, see [15,18,19].

The mechanism of Na+,K+-ATPase inhibition by CTS was mainly explored with ouabain extracted
from Strophanthus gratus and possessing much higher water solubility compared to other cardenolides
and bufadienolides. The apparent affinity for ouabain is sharply increased in the absence of K+

o and
in the presence of Na+

i [20], thus indicating that CTS specifically bind to the phosphorylated E2 state
of Na+,K+-ATPase (Figure 3). Elegant studies performed by Lingrel and co-workers showed that at
least 10 amino acid residues in transmembrane segments H1, H5 and H7, as well as in extracellular
loops H1-H2, H5-H6 and H7-H8 α-subunit affect the affinity of Na+,K+-ATPase for ouabain [21].
Their crucial role in CTS binding was also confirmed by comparative analysis of Na+,K+-ATPase from
different species. Thus, it was shown that the ~1000-fold decreased affinity for ouabain detected in
the Na+,K+-ATPase α1-subunit form rat and mouse (CTS-resistant α1R-Na+,K+-ATPase) compared
to other mammalian species (CTS-sensitive α1S-Na+,K+-ATPase) is caused by substitution of Gln111
and Asn122 by uncharged amino acids, such as Arg and Asp. The same amino acid substitution
sharply decreased affinity for ouabain of α2- and α3-Na+,K+-ATPase [22]. Crystal structures of the
Na+,K+-ATPase and of its cardiac glycoside complex have been identified [16,17].
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VSMC [27]. Keeping these negative data in mind, we adopted a proteomics approach to characterize a 
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3. Evidence for Na+
i,K+

i-Mediated Signaling

In this section, we briefly summarize the recent data on non-canonical CTS-induced cellular
responses mediated by inhibition of the Na+,K+-ATPase and elevation of the [Na+]i/[K+]i ratio.
It should be noted that millemolar concentrations of CTS have been used in the part of experiments
considered in this section. Keeping in mind that the endogenous CTS in mammals are mostly found at
sub-nanomolar concentrations, the physiological significance of their actions detected in this range
should be interpreted with caution.

3.1. Inhibition of Apoptosis

Almost 20 years ago, we surprisingly found that in rat vascular smooth muscle cells (VSMC)
transfected with E1A-adenovirus (E1A-VSMC), ouabain sharply attenuated the development of
apoptosis triggered by growth factor withdrawal, staurosporine and inhibitors of serine-threonine
phosphatases [23]. The death of these cells was also suppressed by Na+,K+-ATPase inhibition in
K+-free medium, whereas dissipation of the transmembrane gradient of monovalent cations in high-K+

medium completely abolished the anti-apoptotic action of ouabain [23]. Because the protection by
ouabain was absent in K+-free, low-Na+ medium, we concluded that the anti-apoptotic signal was
mediated by the gain of [Na+]i rather than by the loss of [K+]i [24,25] (Figure 2, pathway S1).

Additional experiments demonstrated that inhibitors of RNA and protein synthesis, such as
actinomycin D and cycloheximide, abolished the protective effect of ouabain [26]. Deploying a rat
multi-probe template set, we failed to detect differential expression of mRNA species encoding major
pro- and anti-apoptotic proteins, such as Bcl-2, Bcl-xL, Bcl-xS, Bax and caspases-1–3, in ouabain-treated
VSMC [27]. Keeping these negative data in mind, we adopted a proteomics approach to characterize
a set of [Na+]i-sensitive genes. Several soluble proteins, including mortalin, whose expression is
triggered by ouabain, were identified by mass spectrometry [28]. Northern and Western blotting
confirmed the induction of mortalin expression in ouabain-treated VSMC and documented its
mitochondrial localization. We established that, similarly to ouabain, transfection with mortalin
delayed apoptosis in serum-deprived VSMC [28]. These experiments led us to the investigation of
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the mechanisms of the implications of the augmented [Na+]i/[K+]i ratio in the regulation of gene
transcription and translation considered in the next two sections.

3.2. Transcription

Three decades ago, it was demonstrated that exposure to ouabain of several cell types
augments the expression of immediate response genes (IRG), such as c-Fos, c-Jun and Egr-1 [29–33].
Importantly, expression of c-Fos was noted at ouabain concentrations triggering inhibition of all
cloned Na+,K+-ATPase, including rodent CTS-resistant α1R-Na+,K+-ATPase [34]. A key role of
Na+,K+-ATPase inhibition in gene expression has been proven in our studies using VSMC from
the rat aorta [35] and HeLa cells from the human kidney [36]. Side-by-side with ouabain, in both
cell types, c-Fos expression was triggered by Na+,K+-ATPase inhibition in K+-depleted medium and
correlated with the gain of [Na+] rather than the loss of [K+]i. These data demonstrated that CTS affect
c-Fos expression via their interaction with Na+,K+-ATPase rather than other potential targets, and this
signaling cascade is mediated by a rise in intracellular Na+ concentration (Figure 2, pathway S1).

Considering this finding, we identified ubiquitous and tissue-specific [Na+]i/[K+]i-sensitive
transcriptomes by comparative analysis of differentially-expressed genes in VSMC from the rat
aorta, HeLa cells and human umbilical vein endothelial cells (HUVEC) [37]. To augment [Na+]i

and reduce [K+]i, cells were treated for 3 h with ouabain or placed for the same time in the K+-free
medium. Employing Affymetrix-based technology, we detected changes in expression levels of 684,
737 and 1839 transcripts in HeLa, HUVEC and VSMC, respectively, that were highly correlated
between two treatments [37], thus demonstrating a key role of the Na+

i/K+
i-mediated mechanism of

excitation-transcription coupling.
Riganti and co-workers suggested that prolonged incubation with CTS may affect gene expression

via their interaction with steroid receptors distinct from the Na+,K+-ATPase α-subunit [13] (Figure 2,
pathway S5). Indeed, it was shown that 24-h exposure of Caco-2 cells to 1 µM digoxin increased
the content of multidrug resistance transporter MDR1 whose expression is controlled by a steroid
xenobiotic receptor [38]. Smith and co-workers reported that 1 µM marinobufagenin sharply decreased
the activity of the aldosterone-sensitive mineralocorticoid receptor [39]. Fujita-Sato et al. demonstrated
that digoxin suppresses interleukin IL-17 production via its binding to the retinoic acid-related orphan
nuclear receptor [40]. Keeping these data in mind, we compared dose-dependent actions of the
long-term application of ouabain and marinobufagenin on gene expression and intracellular Na+ and
K+ content [41]. The 96-h incubation of HUVEC with 3 nM ouabain or 30 nM marinobufagenin
resulted in elevation of the [Na+]i/[K+]i ratio by ~14- and 3-fold and differential expression of
880 and 484 transcripts, respectively. We failed to detect any differentially-expressed transcripts
in 96-h incubation, with lower concentrations of ouabain and marinobufagenin having no action on
intracellular content of monovalent cations. Thus, our results show that transcriptomic changes in
CTS-treated HUVEC are triggered by elevation of the [Na+]i/[K+]i ratio (Figure 2, pathway S1/S2),
rather than by [Na+]i/[K+]i-independent signaling (pathway S3).

3.3. Translation

Since the initial observation of Lubin and Ennis [42], numerous laboratories demonstrated the
requirement of K+ for protein synthesis, thus suggesting that side-by-side with transcription, CTS affect
translation (for a review, see [43,44]). Indeed, in human fibroblasts, sustained Na+/K+-ATPase
inhibition suppresses protein synthesis without any impact on mRNA function, ATP content and
amino acid transport [45]. In reticulocytes, K+

i depletion inhibits the elongation step of globin synthesis
without any impact on ribosome subunit assembly [46]. In these cells, elevation of [Na+]i diminishes
the efficiency of protein synthesis regulation by K+

i, suggesting competition for the same binding site
within a hypothetical K+

i sensor (Figure 2, pathway S2). As an alternative hypothesis, it might be
proposed that elevation of [Na+]i diminishes the transcription of elongation factors [47–49]. Indeed,
we found that 6-h incubation of HUVEC with ouabain resulted in three-fold attenuation of mRNA
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encoding eukaryotic translation initiation factor 5 (eIF5) [41] that plays an ubiquitous role in protein
synthesis by triggering GTP hydrolysis and mRNA translation [47,50].

It should be underlined that the effect of K+
i loss on protein synthesis is cell type specific. Thus,

we did not see any significant effect on [3H]-leucine protein labelling after 24-h treatment of rat VSMC
with ouabain [51]. Three hypotheses could explain these data. First, the K+

i-sensitive element of the
protein synthesis machinery is absent in VSMC. Second, K+

i-insensitive transcription may be attributed
to a specific class of mRNAs containing special elements in their promoters. Consistent with this
hypothesis, Dever and co-workers reported that phosphorylation of the eukaryotic initiation factor 2
α-subunit (eIF2a) attenuates translation of mRNA with the exception of mRNA encoding activating
transcription factor 4 (ATF4) and several other mRNAs with upstream open reading frames [52].
Third, attenuation of protein synthesis is masked by augmented transcription. Indeed, we discerned a
six-fold elevation of total RNA synthesis in RASMC treated with ouabain for 10 h [51], which could be
attributed to Na+

i-mediated expression of c-Fos and other IRG considered in the previous section.

3.4. Tight Junctions and Cell Adhesion

Using chimerical constructs, it was shown that Na+,K+-ATPase contributes to cell motility,
adhesion and tight junction formation due to the self-adhesive properties of the β-subunit (for a review,
see [53–55]). Gupta and co-workers demonstrated that differences in dose-dependent attenuation of
attachment by ouabain of human and monkey cells expressing CTS-sensitive α1S-Na+,K+-ATPase,
vs. mouse and hamster cells, expressing CTS-resistant α1R-Na+,K+-ATPase, positively correlate
with differences in dose-dependent inhibition of 86Rb influx [56]. At high concentrations, ouabain
blocked tight junctions in Madin–Darby canine kidney (MDCK) [57], VSMC [58,59] and HeLa [58] cells
and sharply attenuated the adhesion of COS-7 [60] and human retinal pigment epithelial cells [61].
Importantly, disruption of tight junction and adhesion in cells expressing α1R- and α1S-Na+,K+-ATPase
was noted at a ouabain concentration ~1000 and 1 µM, respectively [57–60,62], i.e., in the range of
full-scale inhibition of these enzyme. These actions of ouabain were abolished in Na+-free medium
and were mimicked by Na+,K+-ATPase inhibition in K+-depleted medium [57,61–63]. These data
strongly suggest that maintenance of transmembrane gradients of Na+ and K+ is obligatory to establish
cell-to-cell communications and adhesion. The relative impact of the gain of Na+

i and the loss of K+
i,

as well as downstream intermediates of signal transduction remains a matter of speculation [64].
In contrast to the studies cited above, Larre and co-workers reported that three-day incubation

of MDCK cells with ouabain at concentrations 10–50 nM does not disturb [K+]i, but increases the
hermeticity of the tight junctions measured by transepithelial electrical and increases gap junctional
communication between the cells [65,66] suggesting the implication of Na+

i,K+
i-independent signaling

pathways [54,67]. Using pharmacological approaches, it was shown that these phenomena might
be mediated by an ~2-fold elevation of c-Src and ERK1/2 MAPK phosphorylation [68]. Thus,
additional experiments should be performed to examine the relative impact of Na+

i,K+
i-mediated

and -independent signaling in the maintenance of tight junction and cell adhesion.

4. Evidence for Na+
i,K+

i-Independent Cellular Responses

4.1. Cell Proliferation

It was shown that at concentrations less than 10 nM, ouabain increased by 20–30% the proliferation
of cultured canine and human VSMC [69,70], HUVEC [70,71], proximal tubule cells from opossum
kidney [72] and human polycystic kidney cells [73] expressing α1S-Na+,K+-ATPase. At concentrations
lower than 1000 nM, ouabain also augmented the growth of rat astrocytes [74], rat proximal tubule
cells [70] and rat VSMC [70] expressing CTS-resistant α1R-Na+,K+-ATPase. In several investigations,
it was shown that at these concentrations, ouabain does not inhibit Na+,K+-ATPase [69,71–73,75],
suggesting the presence of a Na+

i,K+
i-independent mechanism of this phenomenon. It should be

noted, however, that the lack of impact of low concentrations of ouabain documented in these studies
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might be due to the sharp differences of incubation times selected for the estimation of the proliferative
effect of ouabain and its action on the Na+,K+-ATPase activity. Indeed, to study the proliferation,
cells were incubated with ouabain for more than 24 h, whereas 15–30 min of incubation were used to
assess the rate of 86Rb influx and ATPase activity [69,71–73,75,76]. This comment becomes important
because of the slow actions of CTS at low concentrations on these parameters documented in human
lymphocytes [77] and HUVEC [78]. Indeed, in 6 h, half-maximal elevation of [Na+]i was detected at
100 nM ouabain, whereas in 24 and 48 h, the same increment was detected at ouabain concentrations
of 3 and 10 nM, respectively [78]. Side-by-side with the slow kinetics of interaction of ouabain with
α1-Na+,K+-ATPase observed in early studies [77], this phenomenon might be also caused by slow
elevation of [Na+]i and accumulation of Na+,K+-ATPase in the P-E2Na3 conformation possessing
high affinity for CTS (Figure 3). The increment of [Na+]i might be caused by the interaction of
Na+,K+-ATPase with Na+/H+ exchange and activation of this carrier detected in renal epithelial cells
treated with low concentrations of ouabain [79].

Keeping these comments in mind, we compared dose- and time-dependent actions of ouabain on
the proliferation and intracellular Na+ and K+ content in HUVEC. We observed that 48–72-h exposure
to low-dose ouabain increased cell growth of by 20–40%, whereas at concentrations higher than 30 nM,
ouabain decreased cell proliferation [78]. Importantly, unlike high concentrations, prolonged exposure
to 1 and 3 nM ouabain increased [K+]i and decreased [Na+]i, resulting in attenuation of the [Na+]i/[K+]i

ratio by 30–50%. We also found that low concentrations of ouabain increased rather than decreased
that rate of 86Rb influx, suggesting that elevation of the [Na+]i/[K+]i ratio is caused by activation of the
Na+,K+-ATPase. This conclusion is consistent with numerous studies demonstrating Na+,K+-ATPase
activation by low concentrations of CTS. Thus, it was shown that ouabain at a concentration less
than 10 nM decreases Na+

i in guinea pig atria [80,81] and augmented Na+/K+ pump-mediated ion
current in single cardiac myocytes from guinea pig, dog and human hearts [82]. In human erythrocytes,
activation of 86Rb uptake was observed at 0.1 nM ouabain [83], whereas in opossum and human
kidney proximal tubule cells, augmented 86Rb uptake was seen at ouabain concentrations of 10 nM
and 10 pM, respectively [72,79]. Activation by ouabain and other CTS was also documented in the
study of 86Rb uptake in hippocampal slice cultures [84].

Based on the analysis of the kinetics of [3H]-ouabain binding, Ghysel-Burton and Godfraid
proposed that activation and inhibition of the sodium pump by low and high concentrations of ouabain,
respectively, is caused by its interaction with two distinct binding sites within the same Na+,K+-ATPase
α-subunit [81]. However, the recent structural study failed to reveal the second CTS binding site
within the α-subunit [85]. In contrast, Gao and co-workers suggested that the activatory action of
ouabain is caused by its interaction with the α2- and α3-, but not with the α1-subunit [82]. It should
be noted that the α1-Na+,K+-ATPase isoform is the only isoform detected in endothelial cells [86].
Moreover, we observed that low concentrations of ouabain activate purified α1-Na+,K+-ATPase from
pig kidney [78]. In renal epithelial cells, activation of 86Rb uptake was caused by augmented delivery
of α1-Na+,K+-ATPase to the basolateral membrane [79]. Keeping in mind the data on Na+,K+-ATPase
functioning within the plasma membrane as α2β2-oligomer [87], it may be assumed that binding of
low concentrations of CTS with α1β1 activates the enzyme, whereas occupation of α2β2 at higher CTS
concentrations inhibits its activity. This hypothesis is currently being examined in our lab.

The data considered above strongly suggest that the activation of proliferation by low
concentrations of CTS is by attenuation of [Na+]i or/and elevation of [K+]i (Figure 4). This hypothesis is
consistent with early reports showing activation of this enzyme in cells treated with diverse proliferative
stimuli. Thus, for example, increased Na+,K+-ATPase activity was documented in canine renal
epithelial cells subjected to serum-derived growth factors [88] and in murine macrophages exposed
to hemopoietic growth factors and interleukin-2 [89]. Activation of the Na+,K+-ATPase and elevation
of intracellular K+ content was observed during the proliferation of human lymphocytes [90]. More,
recently, Tian and co-workers demonstrated that si-RNA-mediated knockdown of α1-Na+,K+-ATPase
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decreased baseline proliferation of LLC-PK1 cells and abolished the increment of cell growth triggered
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survival of cells, expressing the CTS-sensitive (α1S) and the CTS-resistant (α1R) Na+,K+-ATPase
subunits. In both cases, saturating levels of CTS strongly increase the [Na+]i/[K+]i ratio. In addition,
CTS trigger distinct conformational changes in α1S and α1R isoforms that, in turn, affect their
interactions with unknown protein partner(s) I and II. These subsequent signaling events lead to
activation of p38 and ERK1/2 MAPK and result in cell death (oncosis) and survival, respectively.
“?”, transcriptomic changes and/or other unknown steps of intracellular triggered by elevation of the
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As shown above, sustained elevation of [Na+]i increased the expression of hundreds of ubiquitous
and cell type-specific genes via Ca2+

i-mediated and -independent mechanisms of excitation-transcription
coupling, whereas the loss of K+

i inhibits translation at the elongation step without any impact
on ribosome subunit assembly. Recently, Ketchem et al. demonstrated that 15-min incubation of
human kidney proximal cells with 10 pM resulted in an ~2-fold elevation of Na+,K+-ATPase-mediated
86Rb uptake and phosphorylation of EGFR, Src and ERK1/2. These effects were prevented by the
angiotensin II type 1 receptor (AT1R) blocker candesartan. The authors concluded that in renal proximal
tubule cells, ouabain stimulates Na+,K+-ATPase through an angiotensin/AT1R/Src/ERK1/2-dependent
mechanism [93]. This signaling pathway is considered in more detail below. Its crosstalk with signals
triggered by Na+,K+-ATPase activation and attenuation of the [Na+]i/[K+]i ratio in the proliferative
actions of low concentrations of CTS should be examined in forthcoming studies.

4.2. Membrane Trafficking

Using the pig renal proximal tubule cell line, LLC-PK1, Liu and co-workers reported that 12-h
preincubation with 100 nM ouabain decreases ouabain-sensitive 86Rb uptake by 5–10-fold without
any significant impact on total enzyme activity suggesting internalization of the Na+,K+-ATPase [94].
Later on, this conclusion was confirmed by the measurement of the content of membrane-bound
Na+,K+-ATPase using the biotinylation assay [95]. Additional studies demonstrated that Na+,K+-ATPase
internalization occurs via the canonical clathrin-dependent pathway of endocytosis mediated by
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activation of phosphotidylinositol-3 kinase (PI3K) and non-receptor tyrosine kinase Src (for a review,
see [12]). It should be underlined that CTS-induced internalization is a cell type-specific phenomenon.
Thus, preincubation with ouabain did not trigger Na+,K+-pump internalization in MDCK cells [94,96].
Moreover, in human and rat endothelial cells, as well as in rat astrocytes, ouabain decreased rather than
increased endocytosis, measured as MTT uptake [97,98].

Yan and co-workers demonstrated that 1-h exposure of human renal HK-2 cells, LLC-PK1 and
LLC-PK1 transfected with α1R-Na+,K+-ATPase to 0.01, 0.1 and 10 µM ouabain, respectively, triggered
endocytosis of Na+,K+-ATPase, as well as the renal-specific isoform on Na+/H+ exchanger NHE3 [99].
Because 30-min exposure to the same concentrations of ouabain did not affect 86Rb influx, the authors
assumed that internalization is mediated by Na+

i,K+
i-independent signaling pathways. Augmented

endocytosis was also documented in human neuronal NT2 cells treated for 20 h with 20 nM bufalin.
However, unlike LLC-PK1 cells, accumulation of vesicles within bufalin-treated NT2 cells was a
result of inhibited recycling within the late endocytosis [100,101]. Importantly, 5-h exposure to
1 nM bufalin inhibited Na+,K+-pump by 2–3-fold [101]. Thus, additional experiments should be
performed to estimate the relative contributions of Na+

i,K+
i-mediated and -independent signaling in

cell type-specific actions of CTS on membrane trafficking.

4.3. Triggering of Oncosis

Numerous studies demonstrated tissue- and species-dependent actions of CTS on cell survival.
Indeed, ouabain and other CTS, at concentrations that elicit full-scale inhibition of Na+,K+-ATPase and
inversion of the [Na+]i/[K+]i ratio, did not affect the survival of rat VSMC [23,51], Jurkat cells [102],
NIH 3T3 mice fibroblasts [7], rat astrocytes [98] and rat aorta endothelial cells [92]. In contrast,
prolonged exposure to ouabain evokes massive death of MDCK cells [103], porcine and human
endothelial cells [24,104], as well as human astrocytes [92].

The death of ouabain-treated MDCK cells is represented by combined markers of “classic”
necrosis (modest cell swelling, negligible labelling with nucleotides in the presence of terminal
transferase, nuclei staining with cell-impermeable dyes, such as propidium iodide) and apoptosis
(nuclear condensation seen in cells stained with cell-permeable dyes, such as Hoechst 33342, chromatin
cleavage, caspase-3 activation) [103,105–107]). In accordance with cell volume behavior distinct from
shrinkage seen in cells undergoing classic apoptosis, we termed the mode of CTS-induced cell death as
“oncosis”, derived from the Greek word for swelling [25,27]. Surprisingly, unlike CTS, almost complete
Na/K pump inhibition and full-scale increase of the [Na+]i/[K+]i ratio evoked by K+-free medium did
not affect the survival of MDCK cells [105,108].

As mentioned above, disruption of the tight junction and attenuation of cell adhesion were
also noted at ouabain concentrations providing full-scale inhibition of the Na+,K+-pump. However,
unlike oncosis, these actions of ouabain were abolished in Na+-free medium and were mimicked by
Na+,K+-ATPase inhibition in K+-depleted medium [57,61–64]. These results show that the mechanisms
of oncosis and the disruption of the tight junction by high concentrations of CTS are different.

Side-by-side with “classic” K+
o-inhibited sites, bovine adrenocortical cells exhibit high-affinity

ouabain-binding sites in the presence of 20 mM KCl, i.e., under conditions when its binding with the
Na+,K+-ATPase is negligible [109]. Smith and co-workers reported that marinobufagenin interferes
with the functions of mineralocorticoid receptors [39]. These data allowed us to propose that CTS
trigger oncosis by interaction with targets distinct from the Na+,K+-ATPase α-subunit (Figure 2,
pathway S5). To examine this hypothesis, we studied the dose-dependent effect of ouabain in K+-free
medium. A similar left-hand shift was noted in the dose-dependent action of ouabain on Na+,K+ pump
activity, as well as the death of MDCK and porcine endothelial cells incubated in K+-free compared
to control K+-containing medium [24,105]. These data strongly suggest that CTS trigger oncosis
via interaction with the Na+,K+-ATPase α-subunit rather than any other potential [K+]o-insensitive
receptors. However, in contrast to the suppression of apoptosis in VSMC [23], the inhibition of
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Na+,K+-ATPase-mediated ion fluxes and elevation of the [Na+]i/[K+]i ratio are not sufficient for
triggering the cell death machinery.

The data considered above are consistent with two alternative mechanisms. First, oncosis occurs
via Na+

i,K+
i-independent signaling triggered by interactions of CTS with the Na+,K+-ATPase (Figure 2,

pathway S3). Second, propagation of the death signal triggered by interactions of CTS with the
Na+,K+-ATPase occurs on the background of the elevated [Na+]i/[K+]i ratio (Figure 2, pathway S4).
To further examine these hypotheses, we transfected MDCK cells expressing α1S-Na+,K+-ATPase
with rodent CTS-resistant α1R-Na+,K+-ATPase [110]. Six-hour treatment of α1R-cells with 1000 µM
ouabain produced a similar increment of the [Na+]i/[K+]i ratio detected in mock-transfected cells
treated with 3 µM ouabain. However, in contrast to the massive death of mock-transfected cells
exposed to 3 µM ouabain, α1R-cells survived after 24-h incubation with 1000 µM ouabain. Then,
we compared dose-dependent actions of ouabain on intracellular Na+ and K+ content, cell survival and
mitogen-activated protein kinases (MAPK) in human and rat vascular smooth muscle cells (HASMC
and RASMC) and human and rat endothelial cells (HUVEC and RAEC) [92]. Six-hour exposure of
HASMC and HUVEC to 3 µM ouabain dramatically increased the intracellular [Na+]/[K+] ratio to
the same extent as in RASMC and RAEC treated with 3000 µM ouabain. In contrast to human cells,
we did not detect any effect of the 3000–5000 µM ouabain on the survival of rat cells, as well as
smooth muscle cells from mouse aorta (MASMC). In HUVEC, ouabain led to phosphorylation of p38
MAPK, whereas in RAEC, it stimulated phosphorylation of ERK1/2. Importantly, unlike the wild-type
α1R/R mouse, ouabain triggered death of smooth muscle cells from α1S/S mouse expressing human
α1S-Na+,K+-ATPase [92].

Overall, our results demonstrate that the drastic differences in cytotoxic action of ouabain on
human and rodent cells are caused by unique features of α1S/α1R-Na+,K+-ATPase, rather than by
any downstream CTS-sensitive/-resistant components of the cell death machinery. They also suggest
that elevation of the [Na+]i/[K+]i ratio contributes to the transduction of death signaling triggered by
the interaction of CTS with α1S-Na+,K+-ATPase. We proposed that CTS trigger distinct conformation
transitions of α1S- and α1R-Na+,K+-ATPase, resulting in their interaction with hypothetical adaptor
proteins I and II, respectively (Figure 4). In the case of rodent cells, ouabain is not toxic, possibly because
the signaling cascade triggered by its interaction with α1R-Na+,K+-ATPase leads to cytoprotective
activation of ERK1/2. This is in contrast to activation of p38 MAPK seen in ouabain-treated
HUVEC [92] and MDCK cells [111] expressing α1S-Na+,K+-ATPase. Sustained elevation of the
[Na+]i/[K+]i ratio is obligatory for the signal transduction (Figure 2, pathway S4) via differential
expression of hundreds of ubiquitous and cell-type specific genes, including potent regulators of cell
differentiation, proliferation and death [37].

One critical implication of the present findings is related to development of anti-cancer therapies
based on CTS. Epidemiological observations identified decreased occurrence of leukemia, as well
as breast, prostate and lung cancer in the patients with heart failure, who were treated with
Digitalis [112–114]. Therefore, numerous studies screened for the novel anticancer CTS compounds,
using rodents injected with human malignant cells (for a review, see [115–117]). The data considered
above show that such an approach can be highly problematic since low concentrations of CTS may
trigger undesirable cell death in human, but not rodent tissues.

4.4. Different CTS Trigger Distinct Cellular Responses

Another piece of evidence for Na+
i,K+

i-independent signaling is based on data showing that
different CTS evoke distinct in vitro and in vivo responses. Thus, for example, bufalin, but not
ouabain evoked differentiation of human leukemia cells, whereas marinobufagenin, but not ouabain
and digoxin increased the constriction of uterine vessels [13,118]. We observed that unlike ouabain,
the complete Na+,K+-ATPase inhibition by marinobufagenin and marinobufotoxin does not trigger
oncosis of MDCK cells [119]. In contrast to ouabain, chronic treatment with digoxin did not raise blood
pressure and even diminished the hypertensive action of ouabain in rats [120–122]. Administration
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of antibodies against marinobufagenin, but not ouabain, lowered blood pressure in rats with
salt-sensitive hypertension [123,124] and chronic renal failure [125]. Administration of ouabain delayed
the development of digoxin-induced arrhythmia and cardiac fibrillation in anaesthetized guinea
pigs [126]. Zulian and co-workers found that in vivo administration of ouabain, but not digoxin,
leads to augmented phosphorylation of Src and attenuated phosphorylation of ERK1/2. They also
found that digoxin completely abolished the increment of the expression of Na+/Ca2+ exchanger
NCX1 and receptor operated channel TRPC6 triggered by 72-h exposure of mesenteric artery smooth
muscle cells to 100 nM ouabain [127].

Assuming that Na+,K+-ATPase is the only receptor for CTS, the possible mechanism of their
diversity may lie in (i) their different affinity for different Na+,K+-ATPase isoform or/and (ii) different
conformation transition of α-Na+,K+-ATPase triggered by distinct CTS that, in turn, triggers diverse
downstream signals. Karlish and co-workers examined the first hypothesis utilizing the α1β1-,
α2β1 and α3β1-isoform of human Na+,K+-ATPase expressed in yeast [128]. They demonstrated that
apparent affinity of these isoforms for cardiac glycosides differs by less than three-fold, whereas
their affinity for marinobufagenin is decreased compared to ouabain by 100–200-fold. More recently,
this research team synthesized CTS derivatives whose selectivity for α2- vs. α1-isoform is increased by
seven-fold [129,130]. The second hypothesis is consistent with our recent data obtained by isothermal
titration microcalorimetry of purified α1β1-isozyme from duck salt glands [131]. These data indicate
that the locations of ouabain and marinobufagenin within the Na+,K+-ATPase a1-subunit are different:
ouabain is completely submersed in the split formed by transmembrane segments M1, M2, M5 and
M6, whereas marinobufagenin only partially penetrates within this area of the enzyme (Figure 5).
Using the same experimental approach, we found that unlike ouabain, E1-E2P conformational
transition does not significantly affect the apparent affinity of the purified Na+,K+-ATPase for
marinobufagenin [131]. Viewed collectively, these data indicate different actions of ouabain and
marinobufagenin on Na+,K+-ATPase conformation that, in turn, may leads to the activation of different
signaling and cellular responses.
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5. Search for Intracellular Na+ and K+ Sensors

According to the generally accepted paradigm, Na+
i/K+

i-sensitive mechanism of excitation-
transcription coupling might be driven by elevation of [Ca2+]i and activation of several Ca2+-sensitive
pathways, a phenomenon termed excitation-transcription coupling [132–134]. Numerous research teams
reported that dissipation of the transmembrane gradient of monovalent cations typically leads to increases
in [Ca2+]i via activation of the Na+/Ca2+ exchanger and/or voltage-gated Ca2+ channels. Elevation
of [Ca2+]i, in turn, leads to its interaction with calmodulin and other Ca2+

i sensors and activation of
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Ca2+ response elements detected within promoters in hundreds of genes (for a comprehensive review,
see [135–137]). Thus, for example, sharp elevation of cyclooxygenase 2 (COX-2) mRNA content seen in
ouabain-treated human lung fibroblasts was completely abolished by Na+/Ca2+ exchanger inhibitor
KB-R4943 [138].

In early studies, we found that 2-h exposure of rat VSMC to saturated concentrations of ouabain
resulted in a 10- and four-fold increment of c-Fos and c-Jun [35]. Because the c-Fos promoter contains
the Ca2++cAMP response element (CRE) [136,139], its augmented expression in ouabain-treated cells
might be mediated by the [Ca2+]i increment caused by depolarization and opening of voltage-gated
Ca2+ channels. Indeed, VSMC depolarization in high-K+ medium leads to activation of c-Fos
expression as observed in ouabain-treated cells. However, unlike high-K+ medium, c-Fos expression in
ouabain-treated cells is not affected by inhibition of L-type Ca2+ channels with nicardipine. Moreover,
we observed that augmented c-Fos expression evoked by ouabain was preserved in Ca2+-free medium
and in the presence of extracellular (EGTA) and intracellular (BAPTA) Ca2+ chelators [35]. Importantly,
unlike rat VSMC, the increment of cFos expression triggered by 45-min exposure of neonatal rat cardiac
myocytes to 100 µM ouabain was completely abolished by EGTA and BAPTA [30], suggesting the cell
type-specific mechanism of Ca2+

i-mediated signaling.
In the next experiments, we examine transcriptomic changes in rat VSMC, HeLa and HUVEC

treated with ouabain in Ca2+-free media supplemented with extracellular and intracellular Ca2+

chelators. Surprisingly, this procedure elevated rather than decreased the number of ubiquitous
and cell-type-specific Na+

i/K+
i-sensitive genes [37]. Among the ubiquitous Na+

i/K+
i-sensitive

genes whose expression was regulated independently of the presence of Ca2+ chelators by more
than three-fold, we discovered several transcription factors (Fos, Jun, Hes1, Nfkbia), interleukin-6,
the protein phosphatase 1 regulatory subunit, dual specificity phosphatase (Dusp8), Cox-2 and cyclin
L1, whereas the expression of metallopeptidase Adamts1, adrenomedullin, Dups1, Dusp10 and Dusp16
was detected exclusively in Ca2+-depleted cells. These data allowed us to conclude that both canonical
Ca2+

i-mediated and novel Ca2+
i-independent mechanisms contribute to transcriptomic changes

evoked by the elevation of the [Na+]i/[K+]i ratio in CTS-treated cells.
To further explore the role of Ca2+ in the expression of Na+

i/K+
i-sensitive genes, we compared

transcriptomes of VSMC subjected to Na+,K+-ATPase inhibition and treated with extra- and
intra-cellular Ca2+ chelators [140]. We found a highly significant (p < 10−12) positive (R2 > 0.51)
correlation between levels of expression of 2071 transcripts whose expression was affected by both
stimuli. Among genes whose expression in Ca2+-depleted cells was augmented by more than
seven-fold, we noted cyclic AMP-dependent transcription factor Atf3, early growth response protein
Egr1 and nuclear receptor subfamily 4, group A member Nr4a1. Importantly, Ca2+ depletion resulted
in elevation of [Na+]i and attenuation of [K+]i by ~3- and two-fold, respectively. Consistent with
previous reports [141–143], the elevated [Na+]i/[K+]i ratio seen in Ca2+-depleted cells was caused by
augmented permeability of the plasma membrane for monovalent cations triggered by the presence of
extracellular Ca2+ chelator EGTA [140]. Thus, novel experimental approaches should be developed to
examine the relative impact of Ca2+-mediated- and -independent signaling in overall transcriptomic
changes triggered by the augmented [Na+]i/[K+]i ratio.

It is generally accepted that transcription is under the control of proteins interacting with
specific response elements within 5′- and 3′-untranslated region (UTR). Thus, for example, c-Fos
5′-UTR contains serum response element (SRE) and Ca2++cAMP response element (CRE) activated
by [Ca2+]i increments in the cytoplasm and nucleus, respectively [144]. We proposed that similar
to Ca2+

i-mediated-signaling elevation of [Na+]i may affect gene expression via the interaction of an
unknown Na+

i-sensor with a hypothetical Na+ response element (NaRE) located within promoters of
c-Fos and other ubiquitous [Na+]i/[K+]i-sensitive genes (Figure 6). Positive results with this approach
could identify NaRE binding protein (NaREBP) by mating yeast transformed with NaRE of the c-Fos
5′-UTR. However, with the construct containing CRE and all other known transcription elements
of the c-Fos promoter, we failed to detect any significant elevation of luciferase expression in HeLa
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cells subjected to 6-h inhibition of Na+/K+-ATPase that contrasted with massive accumulation of
endogenous c-Fos mRNA and immunoreactive protein in ouabain-treated HeLa cells [36].

Several hypotheses could be proposed to explain negative results obtained in this study: (i) NaRE
is located within introns or/and the c-Fos 3′-UTR; (ii) the [Na+]i/[K+]i ratio elevation affects gene
expression via epigenetic modification of the DNA, histones or nucleosome remodeling, i.e., regulatory
mechanism having a major impact on diverse cellular functions [144]; importantly, the epigenetic
mechanism of gene expression does not contribute to the regulation of L-luc transcription in the
plasmid employed in our experiments [36]; (iii) increasing evidence indicates that gene activation
or silencing is under the complex control of three-dimensional (3D) positioning of genetic materials
and chromatin in the nuclear space (for review, see [145]). It may be proposed that the augmented
[Na+]i/[K+]i ratio affects gene transcription by changing the 3D organization of the DNA-chromatin
complex. These hypotheses should be verified in forthcoming studies.
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6. Search for Na+
i,K+

i-Independent Signaling Pathways

It is well documented that the Na+,K+-ATPase α-subunit interacts with dozens of proteins involved
in the regulation of intracellular retention (Akt kinase substrate AS160), clustering within the plasma
membrane (caveolin, adducing, cofilin), proteasomal degradation (β-subunit of the coating protein
COP-1), Na+

o-sensitive Na+ channel Nax, salt-inducible kinase SIK1, etc. (for a review, see [146]).
Data considered above show that elevation of the [Na+]i/K+]i ratio per se is not sufficient to explain
oncosis triggered by long-term exposure of cells expressing α1S-Na+,K+-ATPase to high concentrations
of CTS. Xie and Askari were probably the first to propose an implication of Na+

i,K+
i-independent

signals in the regulation of cell function by CTS [10]. Studies examining this hypothesis are briefly
considered below.
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6.1. Src-Kinase-Mediated Signaling

In a series of elegant studies, Xie and co-workers documented that ouabain evokes the activation
of the membrane-associated non-receptor tyrosine kinase Src. Activated Src leads to phosphorylation
of epidermal growth factor receptor (EGFR) and other receptor tyrosine kinases (RTK) that, in turn,
activate diverse downstream intermediates of the signaling cascade, including phospholipase C
(PLC-γ), G-protein Ras and mitogen-activated protein kinases (MAPK) [12] (Figure 7). The first
evidence supporting this signaling pathway came from data showing dose- and time-dependent
tyrosine phosphorylation in several types of CTS-treated cells. Thus, in cardiac myocytes, A7r5, HeLa
and L929 cells’ exposure to ouabain resulted in rapid activation of Src, its interaction with EGFR and
tyrosine phosphorylation of several proteins that was abolished in the presence of Src kinase inhibitors
(PP2 and herbimycin A) and inhibitor of RTK AG1478 [147,148]. Importantly, using transfected pig
renal epithelial cells (PY-17), it was shown that ouabain activates Src and ERK MAPK in cells expressing
α1-, but not α2-Na+,K+-ATPase [149].Molecules 2017, 22, 635 14 of 26 
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Later on Liang and co-workers demonstrated that the rupture of caveolae by cholesterol or
caveolin-1 depletion resulted in attenuation of Src-mediated signaling triggered by ouabain and
activation of ouabain-sensitive 86Rb influx, suggesting the presence within caveolae of non-pumping
pools of the Na+,K+-ATPase involved in the triggering of Na+

i,K+
i-independent signals [150]. Detailed

mapping of the α1-Na+,K+-ATPase nucleotide binding domain led to the identification of a 20-amino
acid peptide (Ser-415 to Gln-434, NaKtide) that inhibits Scr with IC50 of 70 nM. The positively-charged
NaKtide derivatives penetrated LLC-PK1 cells and blocked ouabain-induced activation of Src and
ERK MAPK [151]. The same research team transfected α1-Na+,K+-ATPase knockdown PY-17 cells
with expression vectors of wild-type enzyme and α1 carrying mutations in the NaKtide region.
They selected mutants restoring ouabain-sensitive Na+,K+-ATPase and found that A420P and A425P
mutants were incapable of interacting with Src and provide ouabain-dependent regulation of Src
activity [152]. More recently, the same research team reported that the single Pro224 mutation
within rat α1-Na+,K+-ATPase inhibits Src-mediated signaling pathway without any impact on the
dose-dependent inhibition by ouabain of Na+,K+-ATPase activity and the rate of 86Rb uptake [153].

Since the initial observation, it has been proposed that the signaling cascade triggered by the
interaction of the Na+,K+-ATPase with Src is independent of any changes in intracellular Na+, K+ and
Ca2+ concentrations [10,12]. Indeed, initial publications reported augmented tyrosine phosphorylation
of EGFR and several other proteins at ouabain concentrations having no significant action on 86Rb influx
and intracellular Na+ content [69,75,154]. Recently, it was shown that in the murine spermatogenic
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cell line GC-2 abundant with α4-Na+,K+-ATPase, an ~2-fold elevation of phosphorylation of ERK1/2,
as well as transcription factors GREB and ATF-1 was detected in 30-min exposure to 10−11 M ouabain,
suggesting Na+

I,K+-independent signaling [155]. Unlike α4-Na+,K+-ATPase, CTS do not affect Src
activity in α1-Na+,K+-ATPase knockdown pig kidney cells PY-17 expressing the α3-isoform of this
enzyme [156]. Using FRET technology, Tian et al. found that in LLC-PK1 cells, ouabain triggers
dissociation of the Src kinase domain from the α1-Na+,K+-ATPase nucleotide binding domain resulting
in tyrosine phosphorylation and activation of this enzyme [157]. More recently, however, Gable et al.
reported that attenuation of Src phosphorylation by ouabain seen in cell-free systems is primary
due to the ATP-sparing effect and cannot be considered as evidence for CTS-induced interaction of
Na+,K+-ATPase and Src [158].

In contrast to the above-cited studies, several research teams reported that CTS trigger
Src-mediated signaling at concentrations inhibiting the Na+,K+-ATPase [148,157,159–162]. Moreover,
the augmented tyrosine phosphorylation seen in CTS-treated cells was mimicked by Na+,K+-ATPase
inhibition in K+-depleted medium [147]. Later on, using purified Na+,K+-ATPase, it was shown
that its interaction with Src measured by Src phosphorylation is suppressed by elevation of K+ and
attenuation of Na+. These data indicated that side-by-side with CTS, any other stimuli triggering
the E1 to E2 conformational transition are sufficient to release the kinase domain and activate the
associated Src [163]. Indeed, CTS was more effective in inhibiting Src activity in the I279A mutant
of α1-Na+,K+-ATPAse keeping the pump in E1 state than either wild-type or the F286A mutant with
increased E2 state [164]. Viewed collectively, these data strongly suggest that at least in several cell
types, an elevated [Na+]i/K+]i ratio contributes to the triggering/progression of Src-mediated signaling
in CTS-treated cells (Figure 2, pathway S4).

6.2. PI3K-Akt-Mediated Signaling

Liu et al. reported that in cultured neonatal rat cardiac myocytes, 50 µM ouabain activates protein
kinase B, also known as Akt, i.e., a serine/threonine-specific protein kinase that plays a key role in
multiple cellular processes including cell proliferation, apoptosis, transcription and cell migration.
They also found that ouabain causes a transient increase of phosphatidylinositol-3,4,5-triphosphate
(PIP3) content and leads to co-immunoprecipitation of the p85 subunit of class IA PI3K and
Na+,K+-ATPase α-subunit that was abolished in the presence of phosphatidylinositol 3-kinase (PI3K)
inhibitors [165]. To examine the role of Src in the triggering of PI3K/Akt signaling, Wu and co-workers
employed mouse fibroblasts lacing Src (SYF cells) and control Src+++ cells. They found that ouabain
triggers accumulation of PIP3, activation of Akt and PI3K1A, as well as co-immunoprecipitation
of the p85 subunit of PI3KIA and Na+,K+-ATPase in both types of cells and was insensitive to the
presence of Src inhibitor PP2. These results allowed hypothesizing that activation of Akt is triggered
by CTS-induced interaction of a proline-rich domain of the α-subunit of Na+,K+-ATPase with the SH3
domain of the p85 subunit of PI3KIA (Figure 7) [161].

Similar to Src-mediated signaling, activation of PI3K and Akt was significantly reduced in
cardiomyocytes isolated from caveolin-1 knockout mice, suggesting that this signaling pathway
mainly occurs within caveolae [166]. Wu and co-workers reported that ouabain did not induce PIP2
accumulation and Akt activation in cardiomyocytes isolated from transgenic mouse deficient in p85
PI3KIA (p85-KO) [167]. Moreover, early ouabain treatment attenuated cardiac hypertrophy and fibrosis
in mice subjected to transverse aortic constriction. Importantly, the action of ouabain was absent in
p85-KO mice, thus suggesting that side-by-side with the positive inotropic effect, the treatment with
Digitalis prevents pathological cardiac hypertrophy and heart failure through activation of PI3KIA [167].
Our recent study demonstrated that anti-fibrotic action of cardiac glycosides documented by the
suppression of myofibroblast differentiation in TGF-β-treated human lung fibroblasts is mediated by
dissipation of transmembrane gradients of monovalent cations [138,168]. To the best of our knowledge,
the role of Na+,K+-ATPase inhibition and the elevated [Na+]i/K+]i ratio in PI3K/Akt-mediated
signaling triggered by CTS has not been explored yet.
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6.3. Ca2+
i-Oscillations

In 2001, Aperia and co-workers reported that the addition of 50–250 µM ouabain causing
partial Na+,K+-ATPase inhibition increased the amplitude of low-frequency [Ca2+]i oscillation in
rat proximal tubule cells, which were abolished in Ca2+-free medium and by L-type Ca2+ channel
blocker nifedipine [169]. Later on, [Ca2+]i oscillations were detected in human aortic endothelial cells
exposed to low concentrations of ouabain [71]. It is well-documented that [Ca2+]i oscillations trigger the
frequency-specific activation of transcription factors [170,171]. Indeed, blockage of [Ca2+]i oscillations
abolished ouabain-induced activation of NF-kB and CREB documented by their transportation into the
nucleus and phosphorylation, respectively [76,169]. In human COS-7 cells [Ca2+]i, these oscillations
were found in the presence of 100 nM ouabain causing a 10% inhibition of the rate of 86Rb influx [71,172].
The same oscillations were also detected in the presence of 100 nM digoxin and marinobufagenin [173].

Numerous studies demonstrated that [Ca2+]i oscillations occur as an interplay between plasma
membrane channels providing Ca2+ influx, Ca2+ pumps of the plasma membrane and endoplasmic
reticulum, as well as Ca2+ release from endoplasmic reticulum triggered by activation of ryanodine
or inositol-1,4,5-triphosphate receptors (InsP3R) (for a review, see [174]). Miyakawa-Naito and
co-workers reported that [Ca2+]i oscillations seen in ouabain-treated cells are caused by conformation
transition of the Na+,K+-ATPase α-subunit and its interaction with InsP3R (Figure 8). Indeed, activation
of the IP3R was independent of the activation of phospholipase C and the release of inositol
1,4,5-trisphosphate [175]. This mechanism has been also confirmed by the fluorescence resonance
energy transfer (FRET) technique, showing the presence of the Na+,K+-ATPase-InsP3R signaling
microdomain [175], by identification of the InsP3R-binding motif in the N-terminus of Na+,K+-ATPase
α-subunits [172] and by inhibition of ouabain-induced [Ca2+]i oscillations in cells overexpressing
a peptide corresponding to the InsP3R-binding fragment of the Na+,K+-ATPase N-terminus [172].
Ankyrin by binding with N-terminus of Na+,K+-ATPase α-subunit and InsP3R acts as a stabilizing
scaffolding protein providing the implication of the cytoskeleton network in the regulation of this
signaling pathway [176].
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inositol 1,4,5-triphosphate receptor (IP3R). Side-by-side with IP3R, oscillations of [Ca2+]i are under the
control of channels providing Ca2+ influx (CaCh) and Ca2+-ATPases localized in the plasma membrane
(PMCA) and endoplasmic reticulum (SERCA). Representative Ca2+

i oscillations documented in 6 h of
exposure of rat cortical neurons to 1 µM ouabain [74] are shown within the insert. CYT, cytoplasm;
ER, endoplasmic reticulum.

Importantly, unlike modest ouabain concentrations, full Na+,K+-ATPase inhibition with 2 mM
ouabain did not cause [Ca2+]i oscillations, but led to sustained increase in [Ca2+]i. It was also shown
that attenuation of [K+]o from 4.0 down to 0.5 mM resulted in the same elevation of [Na+]i as in
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the presence of 250 µM ouabain. However, in contrast to ouabain, lowering [K+]o abolished rather
than increased [Ca2+]i oscillation [169]. Based on these observation, the authors proposed that [Ca2+]i

oscillations seen in ouabain-treated cells are not a primary result of Na+,K+-ATPase inhibition. It should
be noted, however, that lowering [K+]o may inhibit the L-type Ca2+ channel via plasma membrane
hyperpolarization, thus contributing to regulation of [Ca2+]i oscillations independently of partial
Na+,K+-ATPase inhibition. To test the role of Em in [Ca2+]i oscillations, Desfrere and co-workers
employed rat cerebral cortical neurons. In these cells, [Ca2+]i oscillations were detected in the presence
of 1 µM ouabain. At this concentration, ouabain inhibited 86Rb influx by 25% and did not affect Em

estimated by whole cell patch-clamp recording [76]. It should be mentioned that Em was recording
during 2–5 min, whereas [Ca2+]i oscillations were seen in 6 h of ouabain addition. Thus, additional
approaches should be developed to examine the role of the dissipation of the transmembrane gradient
of monovalent cations and altered electrical membrane potential in [Ca2+]i oscillation evoked by
CTS-induced interaction of the Na+,K+-ATPase with the InsP3 receptor.

7. Conclusions and Unresolved Issues

The data considered in our mini-review show that several non-canonical cellular responses such
as gene transcription and translation, disruption of tight junction, cell adhesion and inhibition of
apoptosis in cells expressing α1R-Na+,K+-ATPase were observed in the presence of high concentrations
of CTS, as well as in K+-free medium. These observations strongly suggest that these cellular responses
are mediated by elevation of the [Na+]i/[K+]i ratio (Figure 9). Importantly, elevation of the [Na+]i/[K+]i

ratio might be triggered under diverse physiological and pathophysiological conditions, including
sustained excitation of neuronal cells [177], skeletal muscle exercising [178] and hypoxia [179]. What is
the molecular origin of [Na+]i and [K+]i sensors distinct from known membrane-bound transporters
involved in the regulation of these cellular responses?
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Figure 9. Non-canonical cellular responses triggered by high doses of CTS. Elevation of the
[Na+]i/[K+]i ratio triggered by inhibition of the Na+,K+-ATPase (NKA) by CTS or K+-free medium
affect transcription and translation via unknown [Na+]i and/or [K+]i sensors S1 and S2, respectively,
that, in turn, leads to inhibition of apoptosis in rodent cells expressing α1R-Na+,K+-ATPase. In epithelial
cells, elevation of the [Na+]i/[K+]i ratio attenuates tight junction and cell adhesion via monovalent ion
sensors S3 and S4, respectively. Interaction of CTS with the Na+,K+-ATPase also leads to conformation
transition and interaction with diverse adaptor proteins (AP), including Src, PI3K and InsP3R. In cells
expressing α1S-Na+,K+-ATPase, it results in the activation of p38 MAPK and the oncotic mode of cell
death. Unlike the suppression of apoptosis, K+-free medium does not trigger oncosis, suggesting that
the increased [Na+]i/[K+]i ratio contributes to this signaling pathway via the hypothetical sensor S5.
The role of Na+

i,K+
i-independent signals in cellular responses triggered via adaptor proteins (AP) and

unknown intermediates (?) should be examined further.
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Side-by-side with Na+
i/K+

i-mediated responses, CTS trigger cell type-specific signaling cascades
via conformational transitions of the Na+,K+-ATPase α-subunit and its interaction with Src, PI3K and
InsP3R (Figures 7 and 8). Recent studies demonstrated the CTS-specific pattern of conformational
transitions of the purified Na+,K+-ATPase [131]. Does this phenomenon contribute to the distinct
impact of glycosides and bufadienolides on Src-, PI3K- and InsP3R-mediated signaling and downstream
cellular responses?

Unlike inhibition of apoptosis in cells expressing α1R-Na+,K+-ATPase, oncosis detected in several
types of cells expressing α1S-Na+,K+-ATPase is triggered by high concentrations of CTS, but not by
Na+,K+-ATPase inhibition in K+-free medium. What is the molecular origin of Na+

i,K+
i-mediated

and -independent signal(s) contributing to this mode of cell death (Figure 9)? What is the molecular
mechanism of Na+,K+-ATPase activation and attenuation of the [Na+]i/[K+]i ratio seen in several
types of cells treated with low concentrations of CTS? What is the relative impact of signals triggered
by the decreased [Na+]i/[K+]I ratio and Src-, PI3K- and IP3R-mediated pathways in augmented
proliferation and membrane trafficking demonstrated in cells treated with low concentrations of CTS?
What is relative impact of Na+

i,K+
i-mediated and -independent signaling triggered by endogenous

CTS in baseline conditions and under their augmented production seen in hypertension and other
volume-expanded disorders [8,9,44,180]? These questions will be addressed in forthcoming studies.
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Abbreviations

COS-7
monkey kidney tissue cell line transformated with a mutant
strain of SV40 coding for the wild-type T-antigen

CTS cardiotonic steroids
E1A-adenovirus adenovirus early region 1A
GC-2 murine spermatogenic cell line
HASMC human aortic smooth muscle cells
KB-R4943 inhibitor of the Na+/Ca2+ exchanger
LLC-PK1 kidney proximal tubule cell line
MASMC mesenteric artery smooth muscle cells
NHE3 sodium–hydrogen exchanger 3
NT2 human neuron-committed teratocarcinoma cell line
RASMC rat aortic smooth muscle cells
α1R-Na+,K+-ATPase CTS-resistant α1-Na+,K+-ATPase
α1S-Na+,K+-ATPase CTS-sensitive α1-Na+,K+-ATPase
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