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Abstract
A three-dimensional plasticity model was developed and applied to metal-intermetallic laminate composites containing

phases of the L12 structure. A multi-scale approach that combined the methods of continuum mechanics and dislocation

kinetics was used. This model takes account of the different mechanisms of self-locking superdislocations, the dislocations

and the dislocation walls’ density storage for each type of layer at the micro-scale. At the meso-scale, the solutions to the

dislocation kinetics equations, in the form of stress–strain curves, were used to create the properties of a three-dimensional

representative element. The numerical simulation study of the macroscopic deformation was carried out with the finite

element method using the dynamic model of continuum mechanics, which included the classical conservation laws,

constitutive equations and the equation of state. It was shown that the simulation results generated using this model were in

good agreement with the mechanical tests conducted on the single crystals of the L12 structure. The model provides an

excellent description of the high-temperature plastic strain superlocalization effect of single crystal intermetallics of the

L12 structure. This paper describes the numerical results of the study of the tension and compression tests of metal-

intermetallic laminate composites containing phases of the L12 structure. The model allows the description of the dis-

tribution of the accumulated plastic strain inhomogeneities and is capable of predicting the strengthening properties and

plastic behaviour of the metal-intermetallic laminate composites containing phases of the L12 structure.

Keywords Plasticity model � Metal-intermetallic laminate composites � Layered composites, L12 structure �
Tension � Compression

1 Introduction

Laminated metal composite materials currently have great

practical applications as structural materials. These mate-

rials have excellent mechanical properties: strength, frac-

ture toughness, corrosion and wear resistance, etc. A

description of laminates types and the most common

methods for obtaining laminates and their properties are

presented elsewhere [1]. Metal-intermetallic types of

laminated composites also have several advantages: high

functional properties, the relative simplicity of production

and the low cost. In addition, some have magnetic and

electromagnetic shielding properties [2]. Therefore, they

are often used in mechanical engineering and are subject to

extensive research. These composites are mainly fabricated

by bonding the foils of alternating metals. Systems Ti/Al

[3–5], Ti/Ni [6–8] and Ni/Al [5, 9] are the most commonly

investigated and used. There are many methods of fabri-

cation: hot compaction and hot rolling, explosive welding,

reactive sintering, etc. Intermetallic layers, which are

formed during the bonding of the foils, have a high

strength, hardness and stiffness, whereas more ductile

metal layers are intended to make the composite more

resistant to brittle fracturing. The topics of experimental

research studies have focused on the time and temperature

effects on the formation of the phases [4–9], the fracture

mechanisms of the intermetallic phase under external
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stresses [4–7, 9], the microstructural features of the phases

[3], the phases’ volume fraction effect on the mechanical

properties of the laminates [6–9], etc. However, full-scale

experiments do not always make it possible to identify the

contributions of the various mechanisms of plastic defor-

mation and to explain the fracture and the development of

plastic strain inhomogeneities in a composite material.

Therefore, the role of numerical modelling is particularly

important for the analysis of the plastic behaviour of the

metal-intermetallic layered composite, which allows one to

study the loading of composite materials in a wide range of

initial conditions within the framework of a unified math-

ematical approach.

The theoretical research on layered composite materials

that is available in the literature is largely based on

numerical approaches that were solved within the frame-

work of the finite element method (FEM). A large number

of FEM-based studies are devoted to the modelling of

fibre-reinforced composites because they have a wide

application in the aerospace industry. In a number of

studies, the fracture of the deformation of this type of

material is carried out within the framework of a

micromechanical model using the Generalized Method of

Cells [10, 11]. The continuum damage model [12] has been

used in other approaches to describe the fracture of the

fibre and matrix material. Each of these approaches has its

advantages in solving the particular problem. A smaller

amount of theoretical work is available in modelling the

fracture and deformation of metal-intermetallic layered

composite materials, even though they also have great

practical applications in the aerospace and engineering

industries. The modelling of the deformation and fracture

of these composites is usually based on two models

[13, 14]: the dynamic model of brittle materials for the

intermetallic brittle layer (e.g. in one study [13], the Al3Ti

layer is described by the Johnson-Holmquist ceramics

model) and the plasticity model, such as the Johnson–Cook

model for a soft metallic layer.

In this paper, in contrast to the approaches noted above,

we propose an approach that allows one to take into

account the contribution of the accumulation and annihi-

lation of the microdefects of metallic and intermetallic

materials. This method makes it possible to describe the

deformation hardening of the metal and intermetallic layers

whilst taking account of the properties of the microdefects.

Our research team has accumulated extensive experience in

the experimental and theoretical studies of the plastic

behaviour of the intermetallics with the L12 structure and

pure metals with the FCC (face-centred cubic) crystal

structure. The structure of L12 has an FCC cell, in the

nodes of which atoms of one type are located, whilst the

atoms of another kind are located in the centres of the faces

(Fig. 1). Highly detailed studies have been carried out on

Ni3Ge single crystals that are isostructural to Ni3Al

[15–18]. The detailed temperature dependences of the yield

and flow stresses have been obtained for the different ori-

entations of single crystals, and the evolution of the dis-

location structure of the deformed single crystals has been

studied in detail [15, 16]. The use of extensive experi-

mental material has made it possible to obtain the various

parameters (the dislocation–dislocation interaction param-

eter, the effective activation energies of micromechanisms,

the value of dislocation density, etc.) necessary to construct

the mathematical model of the dislocation kinetics for

metals and alloys based on the storage-recovery frame-

work. The constructed mathematical models of the hard-

ening of the medium deformation element for FCC crystal

structure pure metals and alloys with the L12 structure,

together with a detailed description of the equation system,

are provided in the literature [19–22]. An investigation of

the equation system has shown the different types of

computational stress–strain curves: periodically or aperi-

odically damped flow curves, or monotonically increasing

hardening curves reaching steady saturation [22]. Thus, in

the kinetic model of the mean stress–strain field, various

scenarios have been obtained for the development of the

deformation of an element of the medium. These scenarios

have been confirmed by the experimental observations of

the serrated flow of Ni3Ga, Ni3Al and Ni3Ge at high

temperatures. The originality of the task is the introduction

of the obtained scenarios of the element of the deformation

medium into the dynamic model of solid mechanics for the

description of metal-intermetallic laminate composites. In

each layer of the composite, one can set a different scenario

for the element of the deformation medium. This will allow

us to predict the specific properties and phenomena of the

deformation of laminates. It has previously been shown

Fig. 1 Unit cell model of the L12 structure
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that simulation results generated using this model were in

good agreement with the mechanical tests conducted on the

single crystals of the L12 structure. The model provided an

excellent description of the high-temperature plastic strain

superlocalization effect of intermetallic single crystals of

the L12 structure [23, 24].

The aim of this study was the development of a three-

dimensional plasticity model and its application to metal-

intermetallic laminate composites containing phases of the

L12 structure. The calculation tests of the layered rectan-

gular samples of pure metal layers with a volume fraction

of 0.3 and the L12 intermetallic layers with a volume

fraction of 0.7 were carried out under uniaxial compression

and tension. The laminate layers were perpendicular to the

loading axis, and the deformation temperature was set at

about 873 K.

2 Three-Dimensional Multi-scale Plasticity
Model

2.1 Dislocation Kinetics Model

Dislocation kinetics models of the intermetallic and pure

metal phases are based on the storage-recovery framework.

A short description of this model is given in this paper. The

dislocation kinetics model is described in more detail

elsewhere [19].

The equation system includes the balance equation for

the dislocation density, the balance equation for the density

of the dislocation walls and the equation that describes the

shear stresses. The density of the point defects and the

coefficients controlling the rearrangement of the disloca-

tions into the dislocation walls do not depend on temper-

ature and stresses. The equation system is as follows:

dq
de

¼ C1

aGbð Þ2q
s

x

þ C2 expð�U1=kTÞ þ C3 expð�U2=kTÞ
Gbq1=2

� 1

_e
A
q2

s

� 1

_e
RqN þ n

N

Dh
;

ð1Þ
dN

de
¼ IqN � nN; ð2Þ

s ¼ s0
f þ c1s

ð1Þ
0 expð�U1=kTÞ þ c2s

ð2Þ
0 expð�U2=kTÞ

þ ða0 � bTÞGbq1=2 þ GbN

4p
lg

1

Nb

� �
; ð3Þ

where q is the dislocation density; e is the true strain; _e is

the strain rate; C1, C2 and C3 are model coefficients [21]; x

is the fraction of the edge dislocations in the total dislo-

cation density; G is the shear modulus; b is the modulus of

the Burgers vector; s is the shear stress; U1 and U2 are the

activation energies of the self-locking of the screw and

edge dislocations; c1 and c2 are weight coefficients; sð1Þ0

and sð2Þ0 are pre-exponential factors independent of tem-

perature; N is the density of the dislocation walls; Dh is the

average distance between the dislocations in the wall; I,

R and n are the coefficients controlling the balance of the

dislocation walls; A is the annihilation coefficient; a is the

parameter of dislocation interaction; and a0 and b are

constants, determined from the experimental dependence

a(T) for specific L12—alloy and pure metal.

The coefficients C1, C2 and c1, c1 are equal to zero in

Eqs. (1) and (2) for the pure metal dislocation kinetics

model because the terms that contain these coefficients

describe the self-locking mechanisms of intermetallics

[20, 21].

2.2 Continuum Mechanics Model

It is assumed that the medium is anisotropic and homo-

geneous within one phase. The mass forces, internal heat

sources and thermal effects caused by heat conductivity are

absent. On the basis of these assumptions, the continuum

mechanics model takes the following form.

d

dt

Z
V

qdV ¼ 0; ð4Þ

d

dt

Z
V

q �udV ¼
Z
P �n � r_dS; ð5Þ

d

dt

Z
V

qEdV ¼
Z
P �n � r_ � �udS; ð6Þ

e
_ ¼ s

_r

2l
þ ks

_
; ð7Þ

s
_
: s

_ ¼ 2

3
r2
F Ap

� �
; ð8Þ

p t; eð Þ ¼
q0c

2
0 1 � 2c0

2

� �
ð1 � f� 2Þ2

2 þq0c0e; ð9Þ

where t is time; V is the integration volume; R is the sur-

face bounding the volume V; n
*

is the unit vector of the

external normal to the surface R; q is density; r_ ¼ �pg
_ þ s

_

is the stress tensor; s
_

is its deviator; p is pressure; g
_

is the

metric tensor; �u is the velocity vector; E ¼ eþ �u � �u=2 is

the specific total energy; e is the specific internal energy;
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e
_ ¼ d

_

� d
_

: g
_

� �
g
_
.

3;

is the deviator of the deformation rate tensor;

d
_

¼ r�uþr�uT
� ��

2;

is the deformation rate tensor; s
_r

is the objective measure

of the rate of stress change; l is the shear modulus; rF is

the yield stress; Ap is the plastic work of deformation

2¼ 1 � V ; c0 is the volume sound speed in the material; c0

is the thermodynamic Grüneisen coefficient; and f is the

coefficient of linear dependence of the shock wave velocity

D on the mass velocity u: D = c0 ? fu.

A continuum mechanics model includes mass, momen-

tum and energy conservation laws (4)–(6), constitutive

equations of the plastic flow theory (7)–(8) where parameter

k is excluded through the von Mises condition of plasticity

(8) and an equation of state (9) in the Mie–Grüneisen form.

The flow stress, rF ¼ 2s, is used in the form of rF ¼
rF0ð1 þ aAp þ bApÞ in Eq. (8), where rF0 is the yield stress

(e = 0) and the coefficients a and b are defined from the

strengthening curve that is obtained by the numerical solv-

ing of the dislocation kinetics equations system. This

enables the strengthening processes of the elementary vol-

ume of the deformable object to be taken into account.

The limiting value of the plastic deformation intensity is

used as the local criterion of the shear fracture:

e�u ¼
ffiffiffi
2

p

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3T2 � T2

1

q
;

where T1 and T2 are the first and second invariants of the

plastic deformation tensor. The continuum mechanics

model has been described in greater detail elsewhere

[24, 25].

This model was implemented using the software com-

plex, ‘‘RANET-3’’ [26], with the FEM. This software

complex allows for the problems of the dynamic defor-

mation of objects to be solved in a three-dimensional space

taking into account the mechanical properties of inter-

metallic compounds and pure metals.

The medium is continuous in the boundaries between

the intermetallic and metal layers. The jump discontinuity

of the shear modulus and flow stresses was determined as

the boundary condition between layers.

3 Modelling Results

Calculations of the uniaxial tests (compression and tensile)

on the rectangular samples of the layered composites at a

speed of 30 m/s were carried out. The height of the sample

was set at 14 mm, and the ratio of height to length and

width was 2:1:1. The width of the layers of pure metal was

equal to 1 mm, and for the intermetallic layers, this was

2 mm (Fig. 2).

Figure 3a shows the stress–strain curves obtained

through the numerical solving of the set of dislocation

kinetics model equations for L12 alloys (intermetallic-

phase stress–strain curve) and pure metals (metal-phase

stress–strain curve). These relations set the strain

strengthening of the elementary volumes of the appropriate

phases. The yield stress of the intermetallics is 800 MPa

and the pure metal is 80 MPa. The calculated results of the

sample deformation under uniaxial compression are shown

in Fig. 3b. The distribution of the intensity of the plastic

deformation in the volume of the sample is shown in col-

our; the true strain is shown by percentage in Fig. 3b.

Initial plastic strain is localized in the softer layers of the

pure metal (Fig. 3b, at a 12% degree of strain). The ele-

ments of the intermetallic phase are involved in the plastic

flow process (Fig. 3b at 25% of strain). Further plastic

strain is localized in the layers of the pure metal because

the strain-hardening coefficient of the intermetallic phase is

higher than the metallic one. As a consequence, the sample

is fractured, delaminating along soft layers (Fig. 3b at 42%

of strain). The laminate stress–strain curve, which was

obtained by averaging the von Mises stresses over all

elements of the sample, is shown in Fig. 3a. The laminate

average stress–strain curve makes an abrupt jump to the

yield stress of the intermetallics layers during the initial

stage of deformation (0–2% degrees of strain), despite a

low yield stress of the metal layers, because the elastic

stress of the intermetallic layers is intensively increasing

during the deformation of the metal layer. The curve then

goes into the strain-hardening stage up to the value of a

33% degree of strain. During this stage, the process of the

distribution of the plastic strain occurs both over the ele-

ments of the metal and over the elements of the inter-

metallic compound. The further non-monotonous laminate

average stress–strain curve is related to the plastic flow

instabilities as a result of the delamination of the composite

sample.

Fig. 2 Model of the layered metal-intermetallic composite
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A different scenario is observed when the differences

between the values of the yield stresses of the different

phases are smaller (Fig. 4b). The calculations were made

using the higher flow stresses of the metallic phase in

comparison with the previous case. The intermetallic-phase

stress–strain curve remained unchanged (Fig. 4a). The

plastic flow is more homogeneous under these conditions.

The blurred deformation localization band is formed

(Fig. 4b, 25–34% degree of strain), and its development is

then suppressed (Fig. 4b, 50% degree of strain). The

laminate average flow stress monotonously increases over

the whole range of the considered degrees of strain. This

confirms the plastic flow stability, despite the heteroge-

neous structure of the sample.

The uniaxial tensile tests of the sample were calculated.

The curves presented in Fig. 5a show the strengthening of

the elementary volumes. The plastic strain intensity pat-

terns are shown in Fig. 5b. The plastic flow begins in the

soft metal layers. The elements in the intermetallic layers

are included less intensively in the plastic flow than under

compression in the same conditions (Fig. 2a). There is a

great heterogeneity in the distribution of the plastic strain

intensity over the elements of the sample. The fracture of

the sample begins at a 36% degree of strain in a few of the

metal layers. The laminate average stress–strain curve

(Fig. 5a) takes a non-monotonic form throughout the

deformation process. A stage of the laminate average

stress–strain curve, with a strain-hardening coefficient

close to zero (2–20% degrees of strain), follows after the

initial stress jump associated with the increase in the elastic

stresses in the layers of the intermetallic phase (0–2%

degrees of strain). At this time, most of the plastic strain is

localized in the metal layers. The flow stress of the lami-

nate average curve then increases (20–29% degrees of

strain), and the process of more intensive deformation in

the hard intermetallic layers begins. A stage where the

strain-hardening coefficient is close to zero (29–36%

Fig. 3 a Stress–strain curves of an elementary volume of each phase

and the laminate average stress–strain curve, where rM is the von

Mises stress, b distribution of the plastic strain intensity in the sample

under uniaxial compression

Fig. 4 a Stress–strain curves of an elementary volume of each phase

and the laminate average stress–strain curve, where rM is the von

Mises stress, b distribution of the plastic strain intensity in the sample

under uniaxial compression

Fig. 5 a Stress–strain curves of an elementary volume of each phase

and the laminate average stress–strain curve, where rM is the von

Mises stress, b distribution of the plastic strain intensity in the sample

under uniaxial tension
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degrees of strain) then follows; again, this is due to the

plastic strain localization in the soft metal layers. Finally,

there are jumps of stresses (36–42% degrees of strain)

associated with the beginnings of the laminate sample

failures.

A more homogeneous distribution of plastic strain

intensity along the laminate sample is observed in calcu-

lations with a higher yield stress in the metal phase than in

the previous case. A later process of failure is observed (at

a 55% degree of strain) as a consequence. The laminate

average stress–strain curve (Fig. 6a) takes a similar form to

the curve in the previous case (Fig. 5a) but there are also

differences: the stage with a low hardening coefficient

(2–9%) is less extended and the strain-hardening process

begins earlier and is associated with a more intensive dis-

tribution of plastic strain along the intermetallic layers.

4 Conclusions

The effect of the strength of pure metal layers on the plastic

behaviour of laminate composite has been analysed using a

three-dimensional multi-scale plasticity model for metal-

intermetallic laminate composites containing phases of the

L12 structure.

1. The change of the yield stress of the pure metal layers

has little effect on the calculations of the laminate

average stress–strain curve for both tensile and com-

pression. The calculated laminate average stress–strain

curve changed by less than 10% after a fivefold

increase in the yield stress of the pure metal layers.

2. The strength of the metal layers significantly affects

the homogeneity and stability of the plastic flow of the

laminate. The lower the yield stress of the metal layer,

the more heterogeneous is the distribution of the

plastic strain intensity across the sample. An earlier

fracture of the laminate was observed, and this is

associated with delamination during compression and

failure under tension at places in the soft metal layers.

3. The calculations show non-monotonous tensile lami-

nate average stress–strain curves that can be explained

by the strain localization in the soft metal layers.

4. The shape of the laminate average stress–strain curve

differs significantly from the shape of the stress–strain

curves of the metal and intermetallic layers. New

strain-hardening stages emerged that were associated

with the influence of the heterogeneous-layered struc-

ture of the material.

5. More homogeneous distribution of the plastic strain

intensity over the sample was observed under com-

pression. In percentage terms, the stress–strain curves

are strictly monotonic up to 30 degrees of strain.
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