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Abstract: Invasion, or directed migration of tumor cells into adjacent tissues, is one of the hallmarks
of cancer and the first step towards metastasis. Penetrating to adjacent tissues, tumor cells form
the so-called invasive front/edge. The cellular plasticity afforded by different kinds of phenotypic
transitions (epithelial–mesenchymal, collective–amoeboid, mesenchymal–amoeboid, and vice versa)
significantly contributes to the diversity of cancer cell invasion patterns and mechanisms. Nevertheless,
despite the advances in the understanding of invasion, it is problematic to identify tumor cells with the
motile phenotype in cancer tissue specimens due to the absence of reliable and acceptable molecular
markers. In this review, we summarize the current information about molecules such as extracellular
matrix components, factors of epithelial–mesenchymal transition, proteases, cell adhesion, and actin
cytoskeleton proteins involved in cell migration and invasion that could be used as invasive markers
and discuss their advantages and limitations. Based on the reviewed data, we conclude that future
studies focused on the identification of specific invasive markers should use new models one of which
may be the intratumor morphological heterogeneity in breast cancer reflecting different patterns of
cancer cell invasion.
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1. Introduction

Metastasis is a key feature of cancer and a “final chord” of the tumor progression [1]. The ability for
metastasis enables tumor cells to leave the primary site and disseminate throughout the body, causing
severe organ failure and leading to death. Understanding the mechanisms underlying metastasis is
extremely important for the development of highly effective cancer therapies [2].

Metastasis is a complex process of stepwise events collectively termed the metastatic cascade and
consisting of local invasion of tumor cells, intravasation to blood vessels, survival in the circulation,
arrest at distant organs, extravasation into the parenchyma of distant tissues, micrometastasis formation,
and metastatic colonization (macrometastasis) [1,2]. Invasion is the first step in the metastasis of tumor
cells. From the morphological point of view, the invasion is a process during which malignant cells
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detach from the tumor mass, acquire the ability to actively move, and invade surrounding tissues
through the adjacent basement membrane [3]. The interface of tumor and host tissue, in other words,
the deepest rim of cancerous tissue grown in adjacent non-cancerous tissues, is called an “invasive
front (edge)” [4]. Tumor cells constituting the invasive front are phenotypically different from cells in
other tumor parts. Invasive front cells are believed to have a locomotor phenotype and demonstrate a
variety of types and mechanisms of movement [5,6]. Tumor cells can move collectively or individually.
The type of invasion depends on the molecular changes in tumor cells and the tumor microenvironment
features [7–10]. The distinctive features of collective cell invasion include physical and functional
relationships among tumor cells due to adhesion molecules as well as the presence of leader cells that
are characterized by the mesenchymal phenotype and the ability to form lamellipodia, pull follower
cells, and destroy the extracellular matrix (ECM) through production of proteases [11–13]. Interestingly,
according some reports, invasive leaders do not express molecular features of epithelial–mesenchymal
transition (EMT) [14], but exhibit a basal epithelial gene program, that is enriched in cytokeratin-14
and the transcription factor p63 [15,16].

Individual invasion can occur through mesenchymal and amoeboid cell migration
mechanisms [17]. Sometimes, an intermediate amoeboid/mesenchymal (filopodial) cell migration mode
is distinguished [18]. In mesenchymal movement, tumor cells exhibit a pronounced fibroblast-like
phenotype, high expression of integrins, synthesis of proteolytic enzymes, and activity of small
GTPases Rac1 and Cdc42 that are necessary to form lamellipodia and actomyosin contractions [7,12].
In amoeboid movement, cells are not capable of proteolysis and adhesion of the ECM but demonstrate
the enhanced activity of the actomyosin machinery and the formation of cell membrane protrusions
(blebs), which allow cells to squeeze through tight spaces in the surrounding matrix. Amoeboid
movement directly depends on Rho/ROCK cell signaling and activity of type II myosin [13,17,19].
Tumor cells can transit from one cell migration phenotype to another via mesenchymal–amoeboid
(MAT) and amoeboid–mesenchymal transition. The key role in these transitions is played by the balance
of GTPases Rho and Rac, changes in expression of focal adhesion molecules and proteases, and ECM
stiffness [13]. Importantly, the Rho/Rac feedback loop, particularly balanced relative high RhoA and
Rac1, is also responsible for the hybrid amoeboid/mesenchymal phenotype in migrating cells [20].

EMT plays a key role in tumor dissemination. During EMT, tumor cells lose the epithelial
phenotype and acquire the mesenchymal features and resistance to antitumor treatment; EMT also
promotes immortalization and is involved in the prevention of apoptosis [21,22]. EMT is induced not
only by molecular changes in tumor cells but also by cytokines and growth factors secreted by immune
and stromal cells of the tumor microenvironment [23–26]. EMT may be incomplete (partial) when
tumor cells still retain epithelial features but already acquire mesenchymal traits. During partial EMT,
cells are described as a hybrid, with an intermediate epithelial/mesenchymal phenotype [27]. Partial
EMT has been reported for both single tumor cells and tumor buds (groups of up to five cells) that
are a variant of collective invasion [28]. The phenomenon “tumor budding” is regarded as a specific
“signal” indicating the onset of cancer invasion and metastasis. The presence of tumor buds in the
invasive front was found to be associated with increased metastasis and poor prognosis in various
cancers [28–34].

Tumor cells can acquire the ability for migration not only through EMT but also through the
so-called collective–amoeboid transition (CAT) when cells detach from the tumor mass and acquire
an amoeboid phenotype rather than a mesenchymal phenotype. CAT is known to be regulated by
the core regulatory circuits underlying EMT (miR-200/miR-34) and MAT (Rac1/RhoA) [35] and can be
promoted by hypoxia-inducible factor 1 (HIF-1), which is accompanied by a decrease in E-cadherin
expression [36]. However, CAT still remains a poorly understood phenomenon.

Active migration of tumor cells is not the only mechanism for invasive tumor growth. There is
the so-called passive invasion when cells penetrate adjacent tissues under pressure from other tumor
cells during proliferation (expansive growth) or due to an increase in the ECM density caused by the
production of fibronectin and collagen by cancer-associated fibroblasts [37,38]. The fact that many
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circulating tumor cells are apoptotic [39,40], may be considered as indirect evidence of passive invasion,
whereas active invasion is associated with viable cells [37].

Despite the fact that the mechanisms and types of cell migration and invasion have been described
and studied quite well, there are currently no highly efficient and validated molecular markers for
identification of migrating/invading tumor cells in tumors and, therefore, for assessment of their
invasive potential. These markers could be used to identify patients at the high risk of distant metastasis
and to prescribe therapy aimed at interrupting the metastatic process. In addition, these markers might
represent targets for future therapeutics that block invasion and metastasis.

In this review, we systematized information about molecules that might be potential markers of
tumor invasion and discussed the advantages and limitations of their use in clinical practice.

2. Potential Markers of Cancer Cell Invasion

The literature reports numerous studies describing various molecules that may act as markers of
tumor cell invasion. Conventionally, they may be subdivided into several groups: ECM components,
EMT, cell–cell and cell–ECM molecules, proteases, and actin cytoskeleton proteins (Table 1).

2.1. ECM Components

The first barrier to tumor cell invasion is the basement membrane that is a 100–300 nm thick
ECM structure consisting of laminins, type IV collagen, and other non-cellular components, on which
epithelial cells proliferate and differentiate [41–44]. Impaired integrity of the basement membrane is
a histological marker indicating that carcinoma has acquired invasive properties [12,41,43]. A key
component of the basement membrane, laminin-5, consists of α3, β3, and γ2 chains and plays a
significant role in migration and invasion of tumor cells [43,45–48]. The interaction between laminin-5
and tumor cell integrins leads to the release of proteases and degradation of the basement membrane
and ECM [43,47,49–51]. The laminin-5 γ2 chain monomer, which is considered as one of the most
characteristic markers of invasion is found in the invasive front of different cancers [51,52]. For example,
laminin γ2 expression combined with MMP-7 and EGFR expression in the invasive front is associated
with gastric cancer aggressiveness [43]. In gastric cancer, cytoplasmic expression of laminin γ2 in
tumor cells is related to lymph node metastasis and advanced stage [53]; in gallbladder cancer, stromal
laminin γ2 expression is associated with a poor prognosis [54]. Laminin γ2 is also expressed in the
invasive front of breast, pancreatic, colon, lung, and other cancers [46,51,52,55,56].

Table 1. Potential markers of cancer cell invasion.

Markers Functions Expression at the Invasive Front Limitations

ECM components

Laminin-5, γ2
chain

ECM components, triggering
MMP production through
interaction with integrins

Breast, pancreatic, colon, lung,
and other cancers [46,51,52,55,56] Expression not only in the

invasive front, but in other regions
of the tumor [43,46,57–59]Fibronectin Oral and head and neck cancers

[60,61]

Tenascin C Modulation of cell adhesion Melanoma, breast, lung, liver,
and gallbladder cancers [57,62]

EMT molecules Snail, Twist,
vimentin

EMT induction and
regulation Various cancers [63]

Snail and Twist: Unstable
molecules [64,65], total expression

in breast tumors [66]. Vimentin
may not be expressed in invasive

carcinomas [67]

Cell–cell and
cell–ECM
interaction
molecules

Cadherin-catenin
complex Adherens junctions

Colorectal, oral, and basaloid
carcinomas (loss of E-cadherin

and nuclear localization of
β-catenin) [68–71]

In some tumors, loss of
E-cadherin is not indispensable

for invasive growth [72]

Integrins
Cell–ECM adhesion,

involvement in MMP
production

Melanoma (αvβ3), colon (αvβ6),
head and neck (αvβ6), and lung

(α6β4) cancers [73–76]
Involvement in other biological

processes [77,78]

Galectin 1 Modulation of cell–cell and
cell–ECM interactions

Oral and lung cancers,
glioblastoma [47,79,80]

L1CAM Cell adhesion Colorectal and pancreatic
cancers [81,82]

Dualistic role in cancer
progression [83]
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Table 1. Cont.

Markers Functions Expression at the Invasive Front Limitations

Serine proteases
and MMPs

uPA Proteolysis of plasminogen
to plasmin Oral and skin carcinomas [84,85] Involvement in other biological

processes [86,87]

MMPs ECM proteolysis

Melanoma (MMP-2), colorectal
(MMP-7), gastric (MMP-7),

endometrial (MMP-2, 9), ovarian
(MMP-2, 9), and head and neck
(MMP-2, 9) cancers [56,88–94]

Actin cytoskeleton
proteins

Ezrin

Actin polymerization,
cytoskeletal dynamics

Lung cancer [95,96]
Involvement in other biological

processes. Contradictory data on
the role in cancer progression [96]

WAVE2 Breast cancer [97] -
Cortactin Oral and laryngeal cancers [98,99] -
MENAinv Breast cancer [100] -

Fascin-1 Liver, colon, cervical,
and endometrial cancers [101–104] -

Other proteins Ki-67 Cell proliferation Breast, oral, and endometrial
cancers [6,105–107]

Contradictory data on the level of
Ki-67 expression at the invasive

front [56,69,108]

FGFR2 Cell division, growth and
differentiation

Colorectal and cervical
cancers [109,110]

Involvement in other biological
processes [111]

ECM, extracellular matrix; EMT, epithelial–mesenchymal transition; MMPs, matrix metalloproteinases.

After penetrating the basement membrane, invading cells enter the ECM. Fibronectin is the
major ECM component that plays a key role in the stimulation of cell growth, adhesion, and cell
migration. On the one hand, fibronectin forms a physical barrier for migrating cells; on the other hand,
its interaction with tumor cell integrins, mainly with α5β1, triggers ECM proteolysis through secreting
MMP-2 and MMP-9 [42,112]. Fibronectin was demonstrated to be involved in the regulation of cell
invasion and migration in various cancers [113] and expressed at the invasive front of oral and head
and neck squamous cell carcinomas [60,61].

The tenascin C protein also belongs to ECM glycoproteins; however, it is mainly active during
embryogenesis. In the adult body, tenascin C is found only in some types of connective tissue (tendons,
ligaments, etc.). Interestingly, tenascin C is often expressed in the invasive front of breast, lung, liver,
and gallbladder cancers, as well as melanoma, and is associated with a poor prognosis particularly
decreased recurrence-free and overall survival and a high rate of metastasis [57,62].

Despite the proven association of basement membrane and ECM components with invasiveness,
their role as markers of tumor invasion is ambiguous. For example, laminin γ2 expression is not
always observed in the invasive front. According to Sentani [43], cytoplasmic laminin γ2 expression in
the invasive front of gastric cancer occurs only in 25% of cases, and stromal expression is observed in
8% of cases. According to García-Solano [58], laminin γ2 expression in tumor buds at the invasive
front of colorectal adenocarcinoma is found only in 17–57% of cases. In addition to the invasive front,
laminin γ2 is also found in the basement membrane and cytoplasm of tumor cells, outside the invasive
front [46]. Fibronectin and tenascin C are also expressed not only in the invasive front [57,59].

2.2. EMT Factors

EMT is common to almost all cancers, but the transition is rarely implemented in full [67].
Partial EMT is mainly typical of tumor cell clusters. However, there is evidence that single migrating
cells may be in partial EMT. During partial EMT, tumor cells show co-expression of molecules of
epithelial (E-cadherin, EpCAM, cytokeratin 7, miR-200, miR-34, etc.) and mesenchymal (N-cadherin,
vimentin, ZEB, SNAIL, etc.) phenotypes. Cells in a partial EMT are capable of both adhesion and
migration [27,28,67].

Overexpression of EMT markers is often observed in the invasive front of various cancers [63].
Nevertheless, molecules involved or associated with EMT are characterized by a low diagnostic value in
assessing the invasive potential of tumors. Snail and Twist transcription factors are unstable molecules
and undergo rapid proteasomal degradation [64,65]. In contrast, according to our data, Snail and
Twist are totally expressed in breast tumor, without any selectivity in the invasive front [66]. Vimentin,
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which is considered a marker of the final EMT stage, may not be expressed in invasive carcinomas at
all [67]. Furthermore, EMT is not always necessary for invasion and metastasis. In Snail and Twist
knockout mice, tumor dissemination and the number of metastases are comparable to those in control
mice [114]. Therefore, the presence of EMT cannot always answer the question whether the tumor cell
migrates at a given time.

However, it should be understood that EMT is a complex process in which each step is thought to be
regulated by a distinct set of transcription factors and molecular circuits overlapping to each other and
generating specific phenotypes [115,116]. The picture is complicated by the fact that EMT transcription
factors control other cellular events, including apoptosis and stemness [116]. Moreover, induction
of an EMT transcription factor is known to be sufficient to induce single-cell dissemination without
orchestrating the molecular EMT program and with retaining epithelial identity [16,117]. Thus, further
studies are needed to explore molecular mechanisms underlying each EMT module, namely cell motility,
and to find markers that could be used to assess the invasive potential of tumor cells. In addition, it is
necessary to consider the fact that cells are capable of amoeboid and hybrid amoeboid/mesenchymal
movement. Therefore, a perfect method for determining the invasive phenotype in tumor cells is the
simultaneous assessment of markers of mesenchymal and amoeboid migration.

2.3. Cell–Cell and Cell–ECM Interaction Molecules

Adhesion molecules, such as integrins and the cadherin-catenin complex, are the key components
of tumor invasion. Changes in the activity of cadherins, which are proteins involved in the formation
of cell–cell contacts, is a characteristic feature of invasive growth. E-cadherin, which forms adherens
junctions in an epithelial cell layer, is repressed by Snail, Slug, and Twist transcription factors during
EMT [64]. The loss of E-cadherin and the nuclear localization of β-catenin, involved in signaling to
the actin cytoskeleton [118], were observed in tumor cells at the invasive front in various cancers [69].
Nuclear accumulation of β-catenin in tumor cells in the invasive front and in vessels was found to be a
powerful predictor of liver metastasis in colorectal cancer [70,71]. However, the loss of E-cadherin
expression is probably not an indispensable prerequisite for invasiveness of tumor cells [72] and,
therefore, cannot be used as a marker for invasive growth, at least for some cancers. Moreover,
in some tumors, a loss of E-cadherin has been shown to be detrimental to invasion and metastasis. For
example, the presence of E-cadherin is a specific feature of a highly aggressive form of breast cancer,
inflammatory carcinoma, and needed for successful invasion and metastatic colonization of bone by
tumor cells [119]. In this regard, analysis of more effective markers is needed to assess the invasive
tumor potential, along with markers of amoeboid movement, as mentioned above.

The key event initiating production of metalloproteinases is the interaction of integrins with ECM
components. The main ligands for integrins are fibronectin (α5β1, αvβ3, and α4β1 integrins), collagens
(α1β1, α2β1, and α11β1), and laminins (α2β1, α3β1, α6β1, and α6β4) [41,64,120–123]. For example,
α3β1 integrin activates MMP-9 synthesis through interaction with laminins and triggers reorganization
of the actin cytoskeleton [124]; α6β1 is involved in tumor invasion via activation of the urokinase
plasminogen activator (uPA) receptor and MMP-2 [125]. Laminin-5 is the best-characterized ligand for
α3β1 integrin. α6β4 integrin is involved in the regulation of tumor cell migration through activation
of the Rho-A signaling cascade [121]. Binding of fibronectin to α5β1 integrin activates MMP-1 and
stimulates migration through the ILK/Akt and GSK3β/Snail/E-cadherin signaling pathways [121,126].
Fibronectin-mediated migration is also associated with αvβ3 integrin. αvβ3 integrin is involved in
activation of MMP-2 [127] and, under stress conditions, can trigger a ligand-independent signaling
cascade leading to activation of NF-κB and Slug, acquisition of a stem phenotype, and promotion of
migration [126].

Expression of integrins changes during tumor progression and is often elevated in the invasive
front of tumors: αvβ3 in melanoma [75], αvβ6 in colon and head and neck cancers [73,76], and α6β4
in non-small cell lung cancer [74]. Furthermore, high expression of integrins in tumor cells may
promote metastasis. For example, α2β1 enhances metastasis of rhabdomyosarcoma in nude mice after
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intravenous or subcutaneous injection [128], whereas α3β1 promotes lung metastasis through binding
to laminin-5 in an exposed basement membrane in the pulmonary vasculature [50].

Signaling pathways activated by different integrins may lead to the same biological effects,
while an individual contribution of each of the integrins is different. In neuroblastoma, tumor cell
migration can be activated either via FAK-mediated α5β1 integrin signaling or via a FAK-independent
pathway involving α4β1 integrin. Both signaling pathways lead to the induction of Src family protein
kinases [129,130].

The use of integrins as markers of invasive growth is complicated by the fact that the same
integrins can participate in both invasion and other biological processes [78]. For example, α6β1
integrin, apart from involvement in tumor invasion, also participates in Ca2+ signaling [131] and
platelet adhesion upon damage to the vascular wall [132].

There is evidence that changes in expression of other cell interaction proteins may be a marker of
invasive tumor cells. Galectins, membrane glycoproteins, bound to integrins, laminins, and fibronectin,
are used by cells to interact with each other and with the ECM [47,133]. Galectin-1 is involved in
the regulation of cell adhesion and migration, on the one hand, through stimulation of MMP-2 and
MMP-9 and, on the other hand, through activation of a small Rho GTPase Cdc42, which promotes the
formation of actin filopodia. Increased expression of galectin-1 is associated with high invasiveness
of lung adenocarcinoma and observed in the invasive front of oral squamous cell carcinoma and
glioblastoma [47,79,80]. However, galectins have effects not only on tumor cells but also on immune
cells promoting inflammation or dampening T cell-mediated immune responses [77]. The L1 cell
adhesion molecule (L1CAM), which is involved in β-catenin/TCF signaling, is necessary for cell
migration and invasion. Normally, L1CAM is present only in the nervous tissue, but its expression is
induced in tumor cells. Increased expression of L1CAM was found in many cancers, including the
invasive front of colorectal and pancreatic cancers [81,82]. Nevertheless, L1CAM can have a static
function as a cell adhesion molecule and its expression is associated with good cancer prognosis [83,134].

2.4. Serine Proteases and Matrix Metalloproteinases

One of the main systems responsible for ECM proteolysis is the plasminogen activation system
that triggers a powerful serine protease, plasmin. The central component of this system is the uPA and
its receptor (uPAR), the interaction of which stimulates proteolysis of plasminogen to plasmin [135,136].
uPA is believed to play a significant role in tumor invasion and metastasis [135–137]. Experiments in
model animals demonstrated that inhibition of uPA and/or the uPA/uPAR interaction slows down
metastasis [135]. In contrast, expression of uPAR is associated with tumor invasion and is found in
stromal and tumor cells in the invasive front of oral and skin squamous cell carcinomas [84,85].

Metalloproteinases are involved in proteolytic degradation of the basement membrane and ECM.
MMP-7 activates MMP-2 and MMP-9 gelatinases exhibiting proteolytic activity against collagen
IV, laminins, proteoglycans, and fibronectin [138]. Expression of MMPs is observed during cancer
cell invasion [13,41]. MMP-7-positive tumor cells are predominantly found in the invasive front of
gastric cancer, while their number is much higher in aggressive and late-stage tumors [90,91]. MMP-7
is also expressed in the invasive front of colon cancer and correlates with tumor stage [56,91,92].
Elevated MMP-2 and MMP-9 levels are observed in the invasive front of melanoma, endometrial cancer,
and ovarian cancer [89,93]. High MMP-2 and MMP-9 expression is also observed in the invasive front
of head and neck squamous cell carcinoma [88,94]. Assessment of MMP-2 and MMP-9 expression in
the invasive tumor front may be helpful in the differentiation of verrucous carcinoma and squamous
cell carcinoma of the oral cavity [139].

However, increased expression of uPA and MMPs is not a unique feature of invasive tumor
cells and may be observed in other physiological processes. The components of the uPA system
can be involved in the early stages of tumor formation and can increase cell proliferation, inhibit
apoptosis, etc. [86]. MMPs are mediators between tumor cells and the microenvironment [87]. MMP-9
produced by inflammatory cells is involved in the proteolytic activation of anti-inflammatory cytokines



J. Clin. Med. 2019, 8, 1092 7 of 18

TGF-β2 and TGF-β3, and MMP-2 and MMP-14 participate in the activation of TGF-β1 [87,140,141].
MMP-2, MMP-9, and MMP-14 indirectly modulate TGF-β activity by cleaving an ECM component,
the latent TGF-β binding protein 1 [87,142]. MMP-7 inhibits apoptosis and reduces the efficacy of
chemotherapy by cleaving Fas ligands on the surface of cells exposed to doxorubicin [87,143]. MMP-2
and MMP-9 are also involved in the regulation of angiogenesis and lymphangiogenesis [87]. MMP-9
secreted by inflammatory cells modulates bioavailability of VEGF to the VEGFR2 receptor [87,144].
Experiments in mice demonstrated the role of MMP-9 in triggering the angiogenic switch and in
vasculogenesis [87,145,146]. Therefore, the multifunctionality of MMPs reduces their significance as
markers of invasive growth.

2.5. Actin Cytoskeleton Proteins

Proteins involved in actin cytoskeleton remodeling play an important role in the mechanisms of
tumor cell migration and invasion [147]. The ezrin protein is a connecting link between actin filaments
and membrane proteins involved in cell–cell adhesion and migration [148]. Ezrin was demonstrated to
be localized together with the podoplanin in filopodia, stimulating cellular invasion [149], and expressed
in the invasive front of lung cancer [95]. Many studies reported that upregulation of Ezrin is a negative
prognostic factor in various cancers. However, there is an opposite data indicating the involvement of
negative or reduced expression of Ezrin in cancer progression [96]. This contradiction can be explained
by the fact that Ezrin is implicated in the regulation not only of cell motility but also of cell adhesion,
ion channels, cell proliferation, etc. [150].

The WAVE2 protein is involved in actin filament reorganization and lamellipodia formation and
was shown to colocalize with Arp2 at the invasive front of breast cancer [97,147].

Cortactin regulates cortical actin cytoskeleton dynamics by stabilizing F-actin networks and
promoting actin polymerization via activating the Arp2/3 complex [47,151]. According to in vitro
and in vivo experiments, cortactin promotes invasion of head and neck tumors [151], and its high
expression is found in the invasive front of oral and laryngeal tumors [98,99].

The MENA protein regulates actin polymerization and cell migration. An elevated level of the
MENAinv isoform, which is involved in the formation of invadopodia due to phosphorylation of
cortactin and activation of the N-WASP/Arp2/3 complex, is found in invasive cells of human tumors
and animal tumor models and is associated with a high risk of metastasis [100,152,153].

Fascin-1 is an actin-binding protein involved in filopodia formation. It is highly expressed in
nervous tissue and is normally absent in epithelial cells. However, a high level of fascin-1 is found in
many malignant neoplasms of the liver, gallbladder, stomach, intestines, lung, breast, etc., and is a
marker of poor prognosis [154,155]. Increased expression of fascin-1 is found in the invasive front of
liver, colon, cervical, and endometrial cancers and is associated with a high risk of metastasis [101–104].

2.6. Other Proteins

In the invasive front, there are highly proliferating tumor cells, which probably facilitate the more
efficient dissemination of the tumor. Expression of Ki-67, a cell proliferation marker, was shown to be
elevated in the invasive front of oral and endometrial cancers [6,105,106]. In breast cancer, nuclear
expression of Ki-67 is two-fold higher in the invasive front than in other parts of the tumor and is
associated with metastasis to bones and liver [107]. Increased proliferation of tumor cells in the invasive
front is also indicated by elevated expression of FGFR2 that is involved in the induction of signaling
pathways affecting division, growth, and differentiation of cells, as demonstrated in colorectal and
cervical cancers [109,110]. However, there are also contradictory data on negative expression Ki-67
or the absence of differences in its level between the invasive front and the tumor center in oral and
colorectal cancers [56,69,108]. Moreover, FGFR2 is a multifunctional protein that regulates different
biological processes such as proliferation, differentiation, etc. [111].

At first glance, the prevalence of cell proliferation in the invasive front is in contradiction to the
data that invading tumor cells are enriched in EMT markers [63] because EMT typically associates
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with cell cycle arrest [156]. However, in the invasive front, EMT-cell cycle connection can be broken.
In other words, instead of “go-or-grow”, tumor cells follow “go-and-grow” behavior [115,157].

The search for tumor invasion markers is an important issue aimed at assessing the risk of cancer
metastasis. The role of the discussed molecules as invasive markers is controversial in most cases.
Most of these molecules are involved not only in invasive growth but also in processes not related
to cell migration. Nevertheless, some molecules such as WAVE2, cortactin, MENAinv, and fascin-1
are promising candidates for future studies of their roles as cancer cell invasion markers. In any case,
the search for more specific markers of invasive growth is needed. In this regard, we think that the
emphasis on intratumor morphological heterogeneity typical of many cancers may be very productive.
In particular, investigation of the molecular make-up of various invasive tumor structures may enable
identification of new molecules associated with invasion of tumor cells.

3. Intratumor Morphological Heterogeneity as a Model for Studying Cancer Cell Invasion

Based on more than 10-year morphological studies and detailed analysis of various structural
features of invasive carcinoma of no special type of the breast (IC NST, previously classified as invasive
ductal carcinoma), we have concluded that there are two types of tumors: Nonstructural and structural
(Figure 1). Nonstructural breast carcinomas are characterized by a monomorphic pattern and are
represented by large solid areas connected to each other, with thin layers of stromal elements (Figure 1).

Structural tumors are characterized by a polymorphic pattern and a pronounced phenotypic variety
of the infiltrative (invasive) and stromal components (Figure 1). In other words, structural tumors
demonstrate significant morphological heterogeneity. In initial attempts to determine the potential
morphological IC NST features associated with cancer progression, we identified five main types of the
invasive component in the tumor: Tubular, alveolar, solid, and trabecular structures, and discrete groups
of tumor cells [158–161]. The tubular structures are tube-shaped and lumen-containing arrangements
of single rows of rather monomorphic tumor cells with round monomorphic nuclei. The alveolar
structures are clusters of round or slightly irregular tumor cells of different sizes, often with polymorphic
nuclei. The number of cells in alveolar structures varies from 5–20. The solid structures are represented
by large masses differing in size and shape, which consist of either small tumor cells with moderate
cytoplasm and monomorphic nuclei or large cells with abundant cytoplasm and polymorphic nuclei.
Although solid groups of tumor cells are a characteristic feature of nonstructural breast tumors, they
are also observed in structural carcinomas. The trabecular structures are represented by either a single
row of tumor cells (≥5 cells) or arrangements consisting of two rows of closely related monomorphic
cells with moderate cytoplasm, which are parallel to each other. The discrete groups consist of small
cell clusters (up to five cells) and single tumor cells (Figure 1). The size and shape of these cells and
nuclei vary significantly [158–161].

Different morphological structures were shown to represent transcriptionally distinct tumor cell
populations differing in the number of CD44+CD24− cancer stem cells, epithelial and mesenchymal
features, and enrichment of cancer invasion signaling pathways [160]. Tubular and alveolar structures
are similar in gene expression and demonstrate co-expression of epithelial and mesenchymal markers.
The solid structures retain the epithelial features but demonstrate an increase in the mesenchymal traits
and collective cell migration hallmarks. Trabecular and discrete groups are enriched in mesenchymal
genes and cancer invasion pathways. CD44+CD24− cells are less common in the discrete groups and
more abundant in the alveolar and solid structures [160]. Taken together, these data suggest that
different morphological structures demonstrate varying degrees of EMT: From low in tubular, alveolar,
and solid structures to advanced in trabecular and discrete groups of tumor cells [160].

The intratumor morphological heterogeneity of breast cancer is not an occasional phenomenon
and is strongly associated with disease prognosis and therapy efficacy. Breast tumors with either
alveolar or trabecular structures are characterized by a high rate of lymph node metastasis [161,162].
In neoadjuvant chemotherapy (NAC), tumors with alveolar or trabecular structures often demonstrate
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a poor response [162,163] and an increased risk of distant metastasis [162]. NAC-treated patients with
alveolar or trabecular structures in breast tumors have decreased metastasis-free survival [162].

Figure 1. Two types of breast carcinomas based on a structural pattern. Nonstructural breast carcinomas
are represented by large solid fields of cells connected to each other. Structural breast carcinomas are
characterized by a phenotypic variety of the infiltrative (invasive) component, represented by certain
types of morphological arrangements of tumor cells: Tubular structures, solid structures with small
sprouts, solid structures with large torpedo-like sprouts, alveolar structures, torpedo-like structures,
trabecular structures, and discrete groups of tumor cells. The images of hematoxylin and eosin-stained
sections were obtained from the database of the Department of Pathological Anatomy, Siberian State
Medical University, Tomsk, Russia.

In a longitudinal study of the morphological, molecular genetic and clinical features of breast
cancer, we have clearly seen that the differences are present not only in the structural pattern of
tumor tissue. It has become obvious that breast carcinoma is characterized by pronounced intratumor
morphological heterogeneity when morphologically similar and almost identical structures can exhibit
completely different expression profiles, and it may not be ruled out that this phenomenon may
somehow affect the behavior of tumor [66]. This conclusion prompted us to differentiate in more detail
the previously described morphological structures.

A morphological analysis of structural IC NSTs revealed significant diversity and variability
in solid groups of tumor cells, among which we identified two different variants: Solid structures
with large torpedo-like sprouts and solid structures with small bud-like sprouts (Figure 1). The first
variant is represented by various differently-sized, merging solid areas of tightly packed tumor cells
connected with each other. In these structures, there are elongated, mostly triangular sprouts consisting
of two–three parallel cell rows. The base of torpedo-like sprouts is always pointed out to the body of
solid structures, while the tip, consisting of one–three tumor cells, penetrates to different depths to the
stroma. Importantly, torpedo-like sprouts can be presented as structures independent of solid groups
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of tumor cells (Figure 1). Another variant of solid structures is represented by the large masses of
tumor cells. However, a distinctive feature is that any edge of a solid structure comprises rounded or
spherical bud-like sprouts consisting of five–seven atypical cells penetrating to the stroma (Figure 1).

Thus, the structural diversity of the infiltrative component and the pronounced intratumor
morphological heterogeneity in IC NST represent an attractive model for investigation of tumor cell
invasion. The solid structures both with large torpedo-like and small bud-like sprouts, as well as
trabecular structures, may be considered as a morphological manifestation of collective cell invasion.
Discrete groups of tumor cells, mainly single tumor cells, are an example of individual cell invasion.

4. Conclusions

Invasion is a key event towards the acquisition of the metastatic phenotype by tumor cells and an
attractive target for anticancer therapy aimed at the prevention of metastasis. In in vitro studies, EMT
has been proved to play an important role in the appearance of migrating and invading tumor cells.
However, the cell movement mechanisms working in vitro are frequently not related to the invasive
growth in vivo. Molecules that have been identified in vitro to be involved in cancer cell invasion do
not demonstrate selective expression at the invasive front or at the tips of invasive structures where
tumor cells are rather motile. Moreover, the expression of these molecules does not often demonstrate
clinical significance for the prediction of cancer metastasis risk. Thus, the question how to identify
invading tumor cells in human cancer specimens remains unanswered. In this regard, new effective
models should be developed to investigate the mechanisms of cancer cell invasion. In our opinion,
one of these models, at least in case of breast cancer, can be intratumor morphological heterogeneity
which is a manifestation of different patterns of tumor cell invasion. The investigation of the molecular
make-up of invasive structures of tumor cells and their microenvironment may provide valuable
information about new molecules involved in the invasive growth and may identify novel prognostic
markers and therapeutic targets.
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