СИБИРСКИЙ ГОСУДАРСТВЕННЫЙ МЕДИЦИНСКИЙ УНИВЕРСИТЕТ КАФЕДРА ФАКУЛЬТЕТСКОЙ ПЕДИАТРИИ С КУРСОМ ДЕТСКИХ БОЛЕЗНЕЙ ЛЕЧЕБНОГО ФАКУЛЬТЕТА

З.А. Маевская, Р.Н. Лучинина, И.Э. Гербек

КЛИНИЧЕСКАЯ ОЦЕНКА ПОКАЗАТЕЛЕЙ ПЕРИФЕРИЧЕСКОЙ КРОВИ У ДЕТЕЙ

Методическое пособие

СИБИРСКИЙ ГОСУДАРСТВЕННЫЙ МЕДИЦИНСКИЙ УНИВЕРСИТЕТ КАФЕДРА ФАКУЛЬТЕТСКОЙ ПЕДИАТРИИ С КУРСОМ ДЕТСКИХ БОЛЕЗНЕЙ ЛЕЧЕБНОГО ФАКУЛЬТЕТА

З.А. Маевская, Р.Н. Лучинина, И.Э. Гербек

КЛИНИЧЕСКАЯ ОЦЕНКА ПОКАЗАТЕЛЕЙ ПЕРИФЕРИЧЕСКОЙ КРОВИ У ДЕТЕЙ

Методическое пособие

УДК: 616.15-07-053.2

ББК: Р.345.1

M 133

Маевская З.А., Лучинина Р.Н., Гербек И.Э. Клиническая оценка показателей периферической крови у детей: Методическое пособие.- Томск, 2003.-26 с.

В пособии изложены основные параметры анализа периферической крови у детей, показано изменение показателей в зависимости от возраста, а также при различных патологических состояниях. Пособие включает алгоритм диагностики анемий, рекомендации по оценке показателей автоматического гематологического анализатора, характеристику различных видов лейкемоидных реакций, а также набор заданий для самоконтроля.

Методическое пособие предназначено для студентов, ординаторов, интернов и врачей любых специальностей.

Методическое пособие составлено в Сибирском государственном медицинском университете на кафедре факультетской педиатрии с курсом детских болезней лечебного факультета.

Авторы: З.А. Маевская, Р.Н. Лучинина, И.Э. Гербек

Рецензенты:

Научный руководитель ЦНИЛ АГМУ и Алтайского гематологического центра, член-корреспондент РАМН, заслуженный деятель науки РФ профессор, д.м.н. Зав.отделом лекарственной токсикологии, старший научный сотрудник НИИ фармакологии ТНЦ СО РАМН, к.м.н.

Баркаган З.С.

Карпова Г.В.

Утверждено на заседании учебно-методической комиссии педиатрического факультета СГМУ, протокол № 20 от 24.01.02.

Анализ периферической крови — широко распространенный и весьма информативный метод диагностики, его используют практически во всех случаях амбулаторного и стационарного обследований. Почти всякий патологический процесс вызывает в картине периферической крови (гемограмме) те или иные сдвиги. Данные изменения в ряде случаев выявляются еще на ранних этапах заболевания, когда своевременно начатое лечение может дать хороший эффект. Поэтому грамотная интерпретация его данных крайне необходима.

Оценивая результаты клинического анализа крови у конкретного пациента, как правило, рассматривают отклонения параметров от нормативных значений, то есть от значений, наблюдаемых в популяции у людей сопоставимого возраста. В повседневной практике педиатра можно опираться на параметры, рекомендуемые Туром А.Ф., Шабаловым Н.П. (табл. 1).

Приведем некоторые общие особенности кроветворения, которые необходимо знать для правильной интерпретации клинического анализа крови в зависимости от возраста ребенка. Обязательным является четкое представление об этапах становления кроветворения и последовательной дифференцировки клеток крови от стволовой до зрелых элементов (схема 1).

Оценивая гемограмму, необходимо учитывать, что картина периферической крови характеризует определенный момент динамических процессов: созревание и выход элементов из костного мозга, время жизни клеток, время их циркуляции в русле.

Время дифференцировки и созревания клеток в костном мозге для эритроцитарного ряда составляет около 12 суток, для гранулоцитарного – 10-14 суток.

Различно и время циркуляции клеток: эритроциты находятся в кровотоке - 120 суток, тромбоциты - 10 суток, нейтрофилы около - 10 часов, ретикулоциты 24-29 часов, эозинофилы — до 2 недель.

Проанализируем клиническое значение отдельных показателей анализа крови.

ПОКАЗАТЕЛИ КРАСНОЙ КРОВИ

- в 1 мкл крови содержится 3,9-4,5 млн. эритроцитов (3,9-4,5 \times 10^{12} /л),
- продолжительность жизни эритроцитов 116±5 дней.

Морфологически эритроциты делятся на

- нормоциты – эритроциты нормальной формы и размеров,

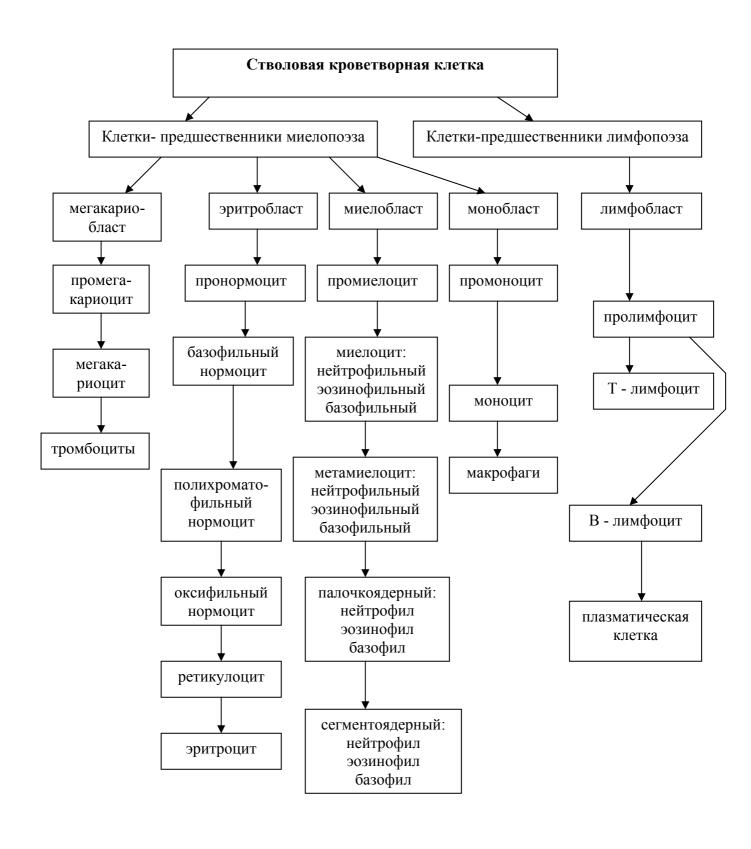


Схема 1. Схема кроветворения (по А.И.Воробьеву)

Таблица 1 Показатели гемограммы у здоровых детей (Тур А.Ф., Шабалов Н.П., 1970)

Возраст	Эритроци- ты, 1×10 ¹² /л	Гемогло- бин, г/л	Тромбоц и-ты,	Ретикуло ци-ты, % ₀	СОЭ, мм/час	Лейкоцит ы,	Нейтро	офилы, %	Лимфо- циты, %	Моно- циты, %	Эозино- филы, %
			1×10 ⁹ /л			1×10 ⁹ /л	Палочк.	Сегмент.			
1 день	6,41-6,77	192-232	217-437	11-43	1,1-3,9	11,4-22,0	0,8-12,4	49,6-72,8	15,5-31,7	4,1-10,5	0,7-3,5
5 день	5,11-6,37	175-213	185-359	6-18	1,1-4,1	7,9-13,7	1,3-5,1	32,4-54,0	30,7-49,9	6,4-14,4	1,8-6,0
1 мес	4,1-5,3	124-166	214-366	4,9-10,9	3-7	7,6-12,4	0,9-3,1	17-39	46-70	4,2-11,8	1,8-6,2
6 мес	3,8-4,6	115-135	206-374	3,9-9,7	5-9	6,7-11,3	0,8-3,2	20-40	47-69	3,9-10,1	1-5
1 год	3,9-4,7	109-131	218-362	4,1-11,7	4-10	6,8-11,0	0,8-3,2	23-43	44-66	4-10	0,8-5,2
3 года	4,0-4,4	111-133	209-351	3,3-10,3	5-11	6,3-10,7	1-3	32-54	34-56	4-8	1-7
4 года	4,0-4,4	112-134	196-344	3,8-9,6	6-12	6,0-9,8	2-4	34-54	33-53	4-8	2-6
5 лет	4,0-4,4	114-134	208-332	0,3-0,96	5-11	6,0-9,8	1-3	35-55	33-53	3-9	2-6
6 лет	4,1-4,5	113-135	220-360	3,6-10,4	5-11	5,8-9,2	1-3	38-58	30-50	3-9	2-6
7 лет	4,0-4,4	115-135	205-355	2,5-9,7	6-12	5,9-9,3	1-2	39-57	32-50	4-8	1-5
10 лет	4,2-4,6	118-138	211-349	3,2-10	5-11	5,8-8,8	1-3	43-59	30-46	4-8	1-5
14 лет	4,2-4,6	121-145	198-342	3,1-8,9	4-10	5,4-8,2	1-3	45-59	30-44	4-8	1-5

- **микроциты** Средний диаметр эритроцитов (СДЭ) < 7 мкм. Возможен физиологический микроцитоз у новорожденных в первые 2 недели жизни. В других случаях микроцитоз наблюдается при
 - ✓ хронической постгеморрагической анемии,
 - ✓ ЖДА,
 - ✓ наследственном гемолитическом микросфероцитозе (анемии Минковского-Шоффара),
 - ✓ лейкозах,
 - ✓ злокачественных опухолях
- **макроциты** свидетельствуют о регенеративных процессах. СДЭ > 8 мкм. Встречаются при
 - ✓ дефиците витамина B_{12} и фолиевой кислоты,
 - ✓ апластической анемии,
 - ✓ гемолитической анемии,
 - ✓ заболеваниях поджелудочной железы,
 - ✓ хлорозе.

Пойкилоцитоз – изменение формы эритроцитов.

- ✓ у новорожденных,
- ✓ при хронической постгеморрагической и железодефицитной анемии,
- ✓ при лейкозах,
- ✓ при злокачественных опухолях

Анизоцитоз – эритроциты различной величины.

- ✓ ЖДА и постгеморрагическая анемия,
- ✓ пернициозная анемия

Базофильная зернистость эритроцитов – недостаточное созревание эритроцитов, зернистость является остатками рибосом.

- ✓ после переливания крови,
- ✓ при отравлении свинцом, висмутом, цинком,
- ✓ пернициозная анемия,
- ✓ анемия при онкозаболеваниях.

Эритробласты (нормобласты) – ядросодержащие клетки красного ростка кроветворения. В норме в периферической крови отсутствуют.

- ✓ кровопотери,
- ✓ гемолитическая анемия,
- ✓ при метастазах злокачественной опухоли в костный мозг,
- ✓ после спленэктомии.

Мегалобласты – СДЭ >15-20 мкм.

- ✓ В₁₂ дефицитные анемии,
- ✓ фолиеводефицитные анемии,

✓ лейкозы

Тельца Жолли – остатки ядер, свидетельствуют о дегенеративных изменениях эритроцитов.

- \checkmark B_{12} дефицитные анемии,
- ✓ фолиеводефицитные анемии,
- ✓ после спленэктомии.

Кольца Кебота – остатки ядер.

- ✓ B_{12} дефицитные анемии,
- ✓ фолиеводефицитные анемии.

Ретикулоциты — юные формы эритроцитов. В норме — 0.5-1% ($5-15\%_0$).

<u>Ретикулоцитопения</u>

- ✓ гипопластическая анемия,
- ✓ B_{12} дефицитная анемия.

Ретикулоцитоз

- ✓ гемолитическая анемия (более $50\%_0$),
- ✓ острая постгеморрагическая анемия,
- ✓ при эффективном лечении ЖДА препаратом железа и B_{12} дефицитной анемии, на 5-8 день

Содержание гемоглобина (Нв) до 5 лет -110 г/л, после 5 лет -120 г/л. Снижение уровня гемоглобина ниже нормы называется анемией.

Цветовой показатель -0.85-1.0, данный показатель рассчитывается по формуле:

$$\underline{\Pi} = \underline{\underline{H} \varepsilon (z/\pi) \times 3}$$
первые три цифры эритроцитов.

Нормохромия – нормальное окрашивание эритроцитов.

Гипохромия (ЦП < 0.8) — снижение окрашивания эритроцитов.

Гиперхромия (ЦП > 1,0) – усиленное окрашивание эритроцитов.

По соотношению показателей красной крови выделяют три вида анемий, что является отправным пунктом для дальнейшей диагностики.

Микроцитарно-гипохромные анемии:

- У ЖДА,
- ✓ анемии при хроническом воспалении,
- ✓ врожденный микросфероцитоз,
- ✓ талассемия.

Нормоцитарно-нормохромные анемии:

✓ острая кровопотеря,

- ✓ анемии при хронической почечной недостаточности,
- ✓ анемия при эндокринной патологии,
- ✓ анемия при раке,
- ✓ гемолитические анемии, иммунные и неиммунные,
- ✓ апластические анемии,
- ✓ миелодиспластический синдром.

Гиперхромно-макроцитарные анемии:

- ✓ мегалобластная В₁₂ дефицитная анемия,
- ✓ мегалобластная фолиеводефицитная анемия,
- ✓ аутоиммунная гемолитическая анемия.

Таким образом, при снижении гемоглобина следует прежде всего определить характер анемии: нормо-, гипо- или гиперхромный.

Гематокрит— соотношение между форменными элементами крови и плазмой. Норма:

- новорожденные 44-62%,
- 3 месяца 32-44%,
- 1 год 36-44%,
- 10 лет -37-44%,
- у мужчин 40-54%,
- y женщин 36-47%.

ПОКАЗАТЕЛИ БЕЛОЙ КРОВИ

Общее количество лейкоцитов в норме $-4-9 \times 10^9 / \pi$.

У новорожденных $-10-20\times10^9$ /л.

У детей первого года – от 6 до $10-12\times10^9$ /л.

Повышение содержания лейкоцитов более нормативных показателей считается лейкоцитозом, уменьшение количества – лейкопенией.

Лейкоцитарная формула показывает относительное (процентное) соотношение различных форм лейкоцитов. Нормы лейкограммы периферической крови приведены в таблице 1. В физиологических условиях лейкоцитарная формула подвержена колебаниям в зависимости от индивидуальных особенностей организма, приема пищи, времени суток и некоторых других факторов.

<u>Новорожденные</u> (рис. 2): при рождении нейтрофилы - 60-70%, лимфоциты - 20-30%. К 5-му дню жизни отмечается первый перекрест кривой нейтрофильных гранулоцитов и лимфоцитов, количество которых достигает 43-45%.

<u>Дети первого года жизни</u>: нейтрофильные гранулоциты -25-30%, лимфоциты -60-65%.

<u>Дети старше 1 года</u>: к 5 годам – второй перекрест кривой лимфоцитов и нейтрофильных гранулоцитов (43-45%). Затем приоритет нейтрофилов – 60-65%, лимфоцитов - 25-30%, данное соотношение сохраняется пожизненно.

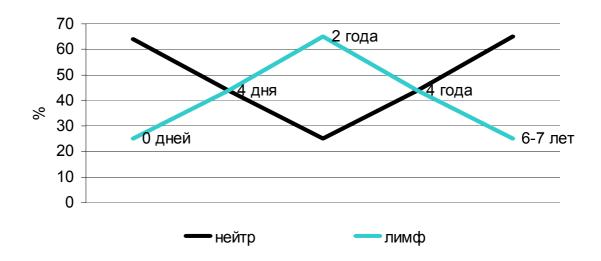


Рис. 2. Процентное соотношение лимфоцитов и нейтрофилов в различные периоды детского возраста.

Помимо процентного соотношения различных видов лейкоцитов, вычисляют их абсолютные числа, т.е. количество каждого вида клеток в 1 мкл крови $(1000/\text{мм}^3$ или $10^9/\text{л})$.

Например, общее количество лейкоцитов 6×10^9 /л, из них лимфоцитов 30%. Абсолютное количество = $\underline{6\times30}_{100}$ = $1,8\times10^9$ /л

Существуют нормы абсолютных количеств отдельных видов лейкоцитов (табл.2).

Таблица 2 **Абсолютное количество лейкоцитов периферической крови**

Лейкоциты	Количество (×10 ⁹ /л)		
Нейтрофилы палочкоядерные	0,04-0,3		
Нейтрофилы сегментоядерные	2-4,2		
Эозинофилы	0-0,3		
Базофилы	0-0,065		
Лимфоциты	1,2-3,0		
Моноциты	0,09-0,6		

Нейтрофилезом называется увеличение числа нейтрофилов более 6×10^9 /л, различают:

- Физиологический (перед менструацией, у новорожденных).
- *Патологический* (бактериальное, грибковое воспаление, паразитарные инфекции, некроз тканей, опухолевая интоксикация). Встречается при:
 - ✓ острых инфекциях (скарлатина, ангина, пневмония, рожа, менингит, дизентерия),
 - ✓ воспалительных процессах (аппендицит, сепсис),
 - ✓ интоксикациях (эндогенных: уремия, диабетическая кома; экзогенных: ионизирующее излучение, бензол),
 - ✓ применении лекарственных средств (АКТГ, адреналин, кортикостероиды),
 - ✓ острой кровопотере (на 48 часов), операциях,
 - ✓ всасывании содержащих белок жидкостей (экссудата при плеврите, перитоните),
 - ✓ болезнях крови (лейкозах, лимфогранулематозах),
 - ✓ злокачественных опухолях.

Нейтропения — снижение числа нейтрофилов ниже $1,8\times10^9$ /л и ниже $1,5\times10^9$ /л у детей раннего возраста. Различают:

- -Врожденные нейтропении:
 - ✓ болезнь Костмана,
 - ✓ циклическая нейтропения.
- -Приобретенные нейтропении:
 - ✓ аплазия кроветворения,
 - ✓ острый лейкоз.
- -Вторичные, реактивные нейтропении:
 - ✓ сепсис,
 - ✓ иммунные.
- Конституциональные нейтропении.

Агранулоцитоз – снижение числа нейтрофилов ниже 0.5×10^9 /л.

Эозинофилия — увеличение числа эозинофилов выше $0,4x10^9$ /л или 5%.

- -Аллергические болезни:
 - ✓ сенная лихорадка,
 - ✓ бронхиальная астма,
 - ✓ крапивница,
 - ✓ отек Квинке,
 - ✓ сывороточная болезнь,
 - ✓ эозинофильный инфильтрат.
- -Инфекционные болезни:
 - ✓ скарлатина на 2-й день после появления сыпи,
 - ✓ ангина,
 - ✓ крупозная пневмония в период выздоровления,

- ✓ хламидиоз.
- -Паразитарные болезни:
 - ✓ аскаридоз,
 - ✓ описторхоз,
 - ✓ лямблиоз,
 - ✓ эхинококкоз,
 - ✓ трихинеллез.
- -Коллагенозы:
 - ✓ ревматоидный артрит,
 - ✓ склеродермия,
 - ✓ системная красная волчанка,
 - ✓ дерматомиозит,
 - ✓ узелковый периартериит.
- -Саркоидоз.
- -Иммунодефицитные болезни:
 - ✓ дефицит Ig A,
 - ✓ синдром Вискотта-Олдрича и др.
- -Болезни крови:
 - ✓ лимфогранулематоз,
 - ✓ витамин-В-12-дефицитная анемия,
 - ✓ лейкоз.
- -Болезни кожи:
 - ✓ экзема,
 - ✓ псориаз,
 - ✓ пемфигус,
 - ✓ грибковые дерматозы и др.

Моноцитоз — число моноцитов выше $0.8 \times 10^{-9} / \pi$

- -Бактериальные инфекции:
 - ✓ туберкулез,
 - ✓ эндокардит,
 - ✓ сифилис,
 - ✓ бруцеллез.
- -Острые инфекции:
 - ✓ грипп,
 - ✓ скарлатина,
 - ✓ ветряная оспа,
 - ✓ краснуха,
 - ✓ дифтерия,
 - ✓ инфекционный мононуклеоз.
- -Протозоозы и риккетсиозы:
 - ✓ малярия,
 - ✓ лейшманиоз,
 - ✓ сыпной тиф.
- -Опухоли.

- -Хронические воспаления:
 - ✓ холецистит,
 - ✓ ревматоидный артрит,
 - ✓ хронический язвенный колит,
 - ✓ системная красная волчанка,
 - ✓ саркоидоз.
- -Состояние после спленэктомии.

Лимфоцитоз — увеличение числа лимфоцитов выше $4x10^{9}$ /л.

- -Физиологический лимфоцитоз (до 40 50%):
 - ✓ у детей до 7 лет (рис. 2),
 - ✓ после физической нагрузки.
- -Патологический лимфоцитоз.
 - 1. Лимфотропные вирусные заболевания:
 - ✓ Инфекционный мононуклеоз (атипичные мононуклеары, характерная клиника),
 - ✓ Инфекционный лимфоцитоз.
 - 2. Цитомегаловирусная инфекция (атипичные мононуклеары, характерная клиника).
 - 3. Инфекционные болезни:
 - ✓ коклюш,
 - ✓ ветряная оспа,
 - ✓ продром скарлатины,
 - ✓ гепатит,
 - ✓ аденовирусная инфекция,
 - ✓ токсоплазмоз,
 - ✓ паротит.
 - 4. Воспалительные и иммунокомплексные болезни:
 - ✓ тиреотоксикоз,
 - ✓ язвенный колит,
 - ✓ болезнь Крона,
 - ✓ васкулиты.

Лимфопения — снижение числа лимфоцитов ниже $1,2x10^{-9}$ /л, наблюдается относительно редко, чаще всего при:

- ✓ кортикостероидной терапии,
- ✓ СПИДе,
- ✓ лимфогранулематозе,
- ✓ туберкулезе,
- ✓ системной красной волчанке,
- ✓ саркоидозе.

Базофилия (повышенное количество базофилов) – при воспалении и аллергии.

ТРОМБОЦИТЫ

Нормальное количество тромбоцитов $150 - 400 \times 10^9 / \pi$

Тромбоцитопения – снижение числа тромбоцитов ниже $100 \times 10^9 / \pi$:

- ✓ иммунная тромбоцитопеническая пурпура (болезнь Верльгофа),
- ✓ лейкозы,
- ✓ гипопластическая анемия,
- ✓ ДВС синдром,
- ✓ гемангиомы,
- ✓ гиперспленизм.

Тромбоцитоз — увеличение числа тробоцитов более $400 \times 10^9 / \pi$:

- ✓ миелопролиферативные заболевания,
- ✓ после спленэктомии (до 1 года),
- ✓ при злокачественных опухолях,
- ✓ после оперативных вмешательств (около 2 недель),
- ✓ при острой постгеморрагической и гемолитической анемиях,
- ✓ при некоторых воспалениях (туберкулез, острый ревматизм, язвенный колит, остеомиелит, ревматоидный артрит и др.)

CO3

Hopma - 3 - 15 мм/ч.

Увеличение СОЭ:

- ✓ физиологические условия (предменструальный и менструальный периоды),
- ✓ острые инфекционные болезни,
- ✓ бактериальные заболевания,
- ✓ коллагенозы,
- ✓ эндокринные заболевания,
- ✓ злокачественные заболевания.

ФАКТОРЫ, ВЛИЯЮЩИЕ НА СОЭ

Увеличивающие	Уменьшающие		
Алкалоз	Ацидоз		
Повышенный фибриноген	Повышенные желчные кислоты и		
	пигменты		
Повышенный гаптоглобин	Аномалии эритроцитов		
Повышенный холестерин, липиды			
Эритроцитопения	Эритроцитоз		
Гиперазотемия	Прием хлорида кальция, салицилатов,		
	препаратов ртути		

В последние годы анализ периферической крови все чаще выполняется на автоматических счетчиках (табл. 3).

В диагностике анемий целесообразно использовать следующие показатели гематологического анализатора:

- 1. Параметры, определяемые прямым способом: число эритроцитов (RBC), гематокрит (HCT), содержание гемоглобина (HGB).
- 2. Расчетные показатели, эритроцитарные индексы, которые вычисляются из показателей первой группы: MCV средний объем эритроцитов, MCH среднее содержание гемоглобина в эритроците, MCHC средняя концентрация гемоглобина в эритроците, RDW ширина распределения эритроцитов по объему, т.е. степень анизоцитоза эритроцитов.

Таблица 3 **Показатели периферической крови**

Автоматический подсчет	Единицы измерения	Норма
HGB – гемоглобин	г/л	120-160
RBC – эритроциты	$\times 10^{12}/\mathrm{\pi}$	3,9-5
НСТ – гематокрит	%	36-48
MCV – средний объем эритроцита	$1 \text{ мкм}^3 = 1 \text{ фемтометр}$	80-95*
МСН – среднее содержание	пикограмм (пг)	27-31
гемоглобина в эритроците	$1 \text{ rp} = 10^{12} \text{ nr}$	
МСНС – средняя концентрация Нв в	$\Gamma/$ л или $\Gamma\%$	32-36
одном эритроците		
RDW – ширина распределения	Ширина гистограммы	11,5-14,5
эритроцитов по объему		
PLT – тромбоциты	$\times 10^9/\pi$	150-400
WBC – лейкоциты	$\times 10^9/\pi$	4,5-11,0
NEV – нейтрофилы	×10 ⁹ /л	1,8-5,5
	%	47-72
LYM – лимфоциты	×10 ⁹ /л	1,2-3,0
-	%	19-37
MON – моноциты	×10 ⁹ /л	0,1-0,9
	%	3-11
EOS – эозинофилы	×10 ⁹ /л	0,02-0,3
-	%	0,5-5,0
BAS – базофилы	×10 ⁹ /л	0,0-0,07
•	%	0-1

^{* -} показатель изменяется в зависимости от возраста (см. табл. 5).

Для оценки степени насыщения эритроцита гемоглобином рекомендуется использовать МСНС и МСН совместно с МСV. В настоящее время ЦП, как очень приблизительный показатель, в большинстве стран не используется.

Параметры МСН и МСНС у здоровых остаются стабильными независимо от возраста и изменяются только при заболеваниях (табл. 4).

Таблица 4 **Изменение эритроцитарных параметров при анемии**

Состояние	МСV (фл)	МСН (пг)	МСНС (г/л)	
Норма	80-94	27-31	32-36	
Нормоцитарная анемия	80-94	25-30	32-36	
Макроцитарная анемия	95-150	30-50	32-36	
Микроцитарная анемия	50-79	12-25	25-30	

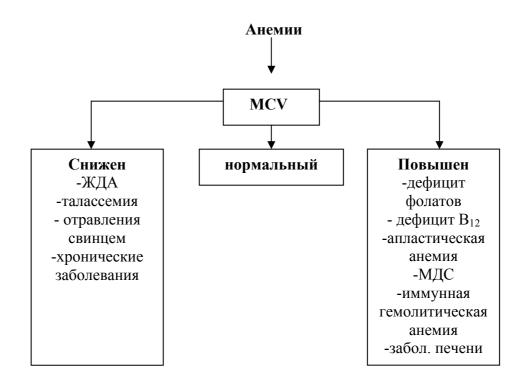
Показатель MCV изменяется в течение жизни (табл. 5). Из таблицы видно, что у новорожденных объем клетки очень велик, с конца первой недели показатель снижается и стабилизируется в возрасте 4-5 лет — нижняя граница нормы составляет 80 фл.

MCV ниже 80 фл расценивается как микроцитоз, выше 95 фл — как макроцитоз.

Таблица 5 **Значение MCV у детей разного возраста (Miller D. et all. 1990)**

Возраст	MCV, (фл)		
Новорожденный	128		
1 неделя	100-112		
6 месяцев	78		
1 год	77-79		
4-5 лет и старше	80		

Диагностическое значение имеют RDW и гистограмма. В отличие от описания мазка периферической крови RDW дает количественную оценку разброса эритроцитов по объему, т.е наглядно в цифрах помогает оценить степень анизоцитоза. Нормальная величина RDW не превышает 14,5%.


Гистограмма графически отражает частоту встречаемости эритроцитов разного объема и является аналогом кривой Прайс-Джонса.

Внедрение нового показателя RDW позволяет разбить основные виды анемий не только на традиционные нормо-, микро- и макроцитарные, но и каждую из этих групп разделить на гомогенные (RDW до 14,5%), т.е. без анизоцитоза, и гетерогенные (RDW больше 14,5%), т.е. с анизоцитозом (табл. 6, рис. 3).

Таблица 6

Алгоритм диагностики анемий на основании изменений MCV и RDW

MCV<80	(микроцитоз)	80 <mcv<95< th=""><th>б (нормоцитоз)</th><th colspan="3">MCV>95 (макроцитоз)</th></mcv<95<>	б (нормоцитоз)	MCV>95 (макроцитоз)		
RDW – N	RDW>14,5	RDW – N	RDW>14,5	RDW - N	RDW>14,5	
ком – N -Гетерозиготн. талассемия, -анемия при хронических болезнях (АХБ)	RDW>14,5 -ЖДА, -Серповидноклет. анемия, -В- талассемия	-АХБ, -Энзимопатии эритроцитов, -Гемоглобино- патии, -Наследств. сфероцитоз, -Остр. кровопотеря, -ХМЛ,	-Смешанный дефицит (ЖДА и мегалобластная анемия), -В12-деф. анемия, -Фолиеводеф. анемия, -Сидеробластная анемия,	-Апластич. анемия, -МДС	RDW>14,5 -АнГА, -В12-деф. анемия, -Фолиево- деф. анемия	
		-Сост. после химиотерапии	-миелофиброз			

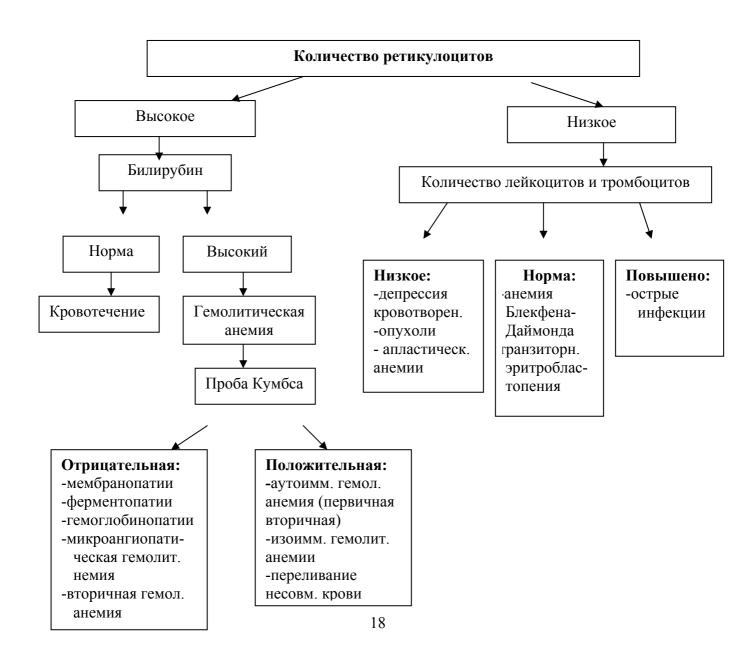


Рис. 3. Использование MCV и количества ретикулоцитов для дифференциальной диагностики анемий (Lanzkousky P., 2000).

ЛЕЙКЕМОИДНЫЕ РЕАКЦИИ

Лейкемоидные реакции – реактивные изменения крови, напоминающие по клиническому течению и показателям гемограммы опухолевые заболевания системы крови.

Различают несколько типов лейкемоидных реакций:

- 1. миелоидные,
- 2. эозинофильные,
- 3. лимфоцитарные лейкемоидные реакции,
- 4. моноцитарно-макрофагальные лейкемоидные.

Миелоидные лейкемоидные реакции

Нейтрофильные (высокий лейкоцитоз за счет сегментоядерных нейтрофилов со сдвигом влево, появление токсической зернистости)

Причины:

- ✓ сепсис,
- ✓ гнойно-воспалительные заболевания,
- ✓ кишечные инфекции,
- ✓ острые кровопотери,
- ✓ корь,
- ✓ ветряная оспа,
- ✓ полиомиелит,
- ✓ скарлатина,
- ✓ коллагенозы,
- ✓ ожоги,
- ✓ диабетический ацидоз,
- ✓ опухоли коры надпочечников,
- ✓ лечение кортикостероидными гормонами.

Среди нейтрофильных лейкемоидных реакций следует отметить так называемую лейкопению потребления, которая возникает при тяжелых воспалительных процессах, обширных очагах нагноения. В этих случаях количество лейкоцитов будет снижено, иногда значительно, а сдвиг формулы резко выражен до миелоцитов и палочкоядерных лейкоцитов.

Подобный феномен связан с гибелью в очаге воспаления огромного количества нейтрофилов и истощением резерва костного мозга. Прогностически такой вариант неблагоприятен.

Промиелоцитарные при «выходе» больного из иммунного агранулоцитоза

Эозинофильные лейкемоидные реакции

Существует способ запоминания причин эозинофилии. Этому помогает акроним ОПАКА:

О – опухоли (лимфогранулематоз, лимфосаркома, эозинофильная гранулема, гистиоцитоз, острый лимфобластный лейкоз, миелопролиферативные заболевания),

 Π – паразиты,

- А аллергия (медикаментозная, сывороточная болезнь, аллергический васкулит, ангионевротический отек, крапивница, синдром Стивенса-Джексона, кожные заболевания),
- К коллагенозы (ревматоидный артрит, СКВ, эозинофильный фасцит, узелковый периартериит),

A - actma.

- В настоящее время известно насколько механизмов развития гиперэозинофилии крови:
 - антителозависимый хемотаксис, развивающийся при паразитарных инвазиях (IgG или IgE антитела),
 - иммунный, опосредованный через IgE, при аллергии под действием ИЛ-4 или ИЛ-5,
 - ответ на хемотаксический эозинофильный фактор, продуцируемый некоторыми опухолями,
 - собственно опухолевая пролиферация, субстрат которой составляют эозинофильные элементы.

Лимфоцитарные лейкемоидные реакции

Лимфоцитарные лейкемоидные реакции характеризуются значительным увеличением абсолютного числа лимфоцитов (более $4\times10^9/л$) в периферической крови. Иногда сочетается с увеличением лимфатических узлов, печени и селезенки.

Причины:

- ✓ бактериальные инфекции (коклюш, болезнь кошачьей царапины, лептоспироз, иерсиниоз),
- ✓ вирусные инфекции (ЦМВ, инфекционный мононуклеоз, инфекционный лимфоцитоз, краснуха, аденовирус, паротит, ветряная оспа, гепатит, полиомиелит),
- ✓ протозойные инвазии (токсоплазмоз),
- ✓ другие заболевания (иммунобластная лимфоаденопатия, аллергические дерматиты, гипертиреоидизм и т.д.).

Болезнь кошачьей царапины (фелиноз, Молларе гранулема, доброкачественный вирусный лимфаденит) характеризуется признаками общего недомогания, повышением температуры, увеличением регионарных лимфатических узлов, расположенных вблизи укуса или царапины кошки. Инкубационный период длится 5-50 дней. Возбудитель — граммотрицательная бактерия из группы Chlamidiae. Возможны необычные проявления: коньюнктивит, энцефалопатия, поражение костей. Прогноз благоприятный.

Инфекционный лимфоцитоз доброкачественное инфекционное заболевание. Болезнь вызывается различными энтеровирусами. Контагиозность составляет 25-70%. Пути передачи: контактный, через предметы, фекальный. Пик заболеваемости – весна и осень. Клинические проявления, правило, отсутствуют. Однако у 50% отмечается как незначительное повышение температуры в течение 1-3 дней, признаки верхних дыхательных путей, абдоминальный инфекции протекающий либо в виде острого живота, либо с болями брюшной стенки (миалгиями), либо в виде кишечной колики, иногда с признаками энтероколита (обычно у детей до 3 лет). Редко наблюдаются энцефалитный и менингеальный синдромы. В анализе периферической крови – лейкоцитоз от 30-40 до 100×10^9 /л с лимфоцитозом до 70-90% и более. Лимфоциты имеют нормальные размеры и морфологию, могут встретиться тени Гумпрехта. Лечение не требуется.

Моноцитарно-макрофагальные лейкемоидные реакции

Клинически они проявляются моноцитозом в крови, появлением моноцитарно-макрофагальных инфильтратов в органах и тканях. Чаще сопровождают:

- ✓ туберкулез,
- ✓ иерсиниоз,
- ✓ саркоидоз Бека,
- ✓ болезнь Вегенера, Крисчена-Вебера,
- ✓ доброкачественный гистиоцитоз синусов,
- ✓ паразитарные заболевания,
- ✓ игнфекционный мононуклеоз.

ЗАДАЧИ ДЛЯ САМОКОНТРОЛЯ

1. Больной М. 1год 2 месяца.

Анализ крови: $H_B - 100 \text{ г/л}$, $9p - 4,1 \times 10^{12}$ /л, $\Pi = 0,7$, Лейк $-6,6 \times 10^9$ /л, $\Omega = 15 \text{ мм/ч}$, ретик -6%, $\Pi = 2\%$, $\Omega = 10\%$, $\Omega = 10$

- А. Какие отклонения имеются в анализе?
- В. Какие заболевания возможны?
- С. Какие необходимо провести дополнительные исследования?
- 2. Больной Р. 3 года.

Анализ крови: HB - 56 г/л, $\Im p - 1,92 \times 10^{12}$ /л, \coprod . Π . - 0,8, Π ейк $- 12 \times 10^{9}$ /л, $CO\Im - 30$ мм/ч, ретик - 104%, O0, O0 – O0, O0 – O0, O0, O0 – O0, O0,

- А. Какие отклонения имеются в анализе?
- В. О каких заболеваниях можно думать?
- С. Какие необходимо провести дополнительные исследования?
- 3. Больной А. 14 лет.

Анализ крови: Нв -102 г/л, Эр $-2,36\times10^{12}$ /л, ЦП -1,3, Лейк $-3,8\times10^{9}$ /л, СОЭ -24 мм/ч, ретик $-10\%_{o}$, тромб -154×10^{9} /л, П -2%, С -40%, Э -1%, Б-1%, Л -50%, М -6%. Анизоцитоз эритроцитов, с преобладанием гиперхромных макроцитов, встречаются мегалоциты, нормобластоз 8:100 лейкоцитов, встречаются эритроциты с тельцами Жолли.

- А. Какие отклонения имеются в анализе?
- В. О каких заболеваниях можно думать?
- С. Какие необходимо провести дополнительные исследования?
- Больной К. 5 лет.

Анализ крови: Нв -114 г/л, Эр $-3,92\times10^{12}$ /л, ЦП -0,9, Лейк $-7,8\times10^9$ /л, СОЭ -12 мм/ч, тромб -14×10^9 /л, П -10%, С -58%, Э -4%, Б-0%, Л -22%, М -6%. В мазках преобладают мелкие дегенеративные формы тромбоцитов.

- А. Какие отклонения имеются в анализе?
- В. О каких заболеваниях можно думать?
- С. Какие необходимо провести дополнительные исследования?
- Больной А. 6 лет.

Анализ крови: Нв -124 г/л, Эр -4.2×10^{12} /л, ЦП -0.9, Лейк -16.8×10^{9} /л, СОЭ -56 мм/ч, Ю -6%, миел -2%, П -24%, С -51%, Э -1%, Б -0%, Л -9%, М -7%. Токсическая зернистость в большинстве нейтрофилов, вакуолизация

цитоплазмы нейтрофилов, разрушенные клетки нейтрофильного ряда, тени Гумпрехта.

- А. Какие отклонения имеются в анализе?
- В. О каких заболеваниях можно думать?
- С. Какие необходимо провести дополнительные исследования?

Больной Л. 9 лет.

Анализ крови: Нв - 146 г/л, Эр - 4,72×10¹²/л, Лейк - 19,6×10⁹/л, СОЭ - 24 мм/ч, Π - 1%, C - 10%, Э - 74%, E - 1%, E - 1%, E - 8%. Вакуолизация цитоплазмы эозинофилов, среди них примерно 40% - палочкоядерные формы, много разрушенных эозинофилов.

- А. Какие отклонения имеются в анализе?
- В. О каких заболеваниях можно думать?
- С. Какие необходимо провести дополнительные исследования?

Больной Ф. 4 года.

Анализ крови: Нв -210 г/л, Эр $-7,46\times10^{12}$ /л, Лейк $-15,8\times10^{9}$ /л, СОЭ - не оседает, тромб -580×10^{9} /л, Ю -2%, П -14%, С -62%, Э -3%, Б -2%, Л -15%, М -2%. Нt -64%. Морфологию эритроцитов описать не удается, так как они расположены в 2-3 ряда.

- А. Какие отклонения имеются в анализе?
- В. О каких заболеваниях можно думать?
- С. Какие необходимо провести дополнительные исследования?

Больной Б. 14 лет.

Анализ крови: Нв -72 г/л, Эр $-2,46\times10^{12}$ /л, Лейк $-2,4\times10^{9}$ /л, СОЭ -46 мм/ч, ретик $-7\%_{o}$, тромб -12×10^{9} /л, П -1%, С -2%, Л -97%. Лимфоциты пикнотичные, микроформы. Гипохромия эритроцитов ++, анизопойкилоцитоз.

- А. Какие отклонения имеются в анализе?
- В. О каких заболеваниях можно думать?
- С. Какие необходимо провести дополнительные исследования?

9. Больной Р. 4 года.

Анализ крови: $H_B - 125 \text{ г/л}$, $\Im p - 4,3x10^{12}/л$, $CO \ni - 8 \text{ мм/ч}$, Лейк $- 56x10^9/л$, C - 10%, $\Im - 5\%$, $\Pi - 80\%$, M - 5%, тромб. $- 210x10^9/л$.

- А. Какие отклонения имеются в анализе?
- В. О каких заболеваниях можно думать?
- С. Какие необходимо провести дополнительные исследования?

Эталоны ответов на задачи

- 1. А. снижение гемоглобина, снижение ЦП.
 - В. железодефицитная анемия 1-й степени.
 - С. Уровень сывороточного железа, ОЖСС.
- 2. А. Снижение гемоглобина и эритроцитов (анемия 3-й степени), лейкоцитоз умеренный с выраженным сдвигом влево, выраженный ретикулоцитоз, ускорение СОЭ, нормобластоз.
 - В. Гемолитическая анемия.
 - С. Определение билирубина, проба Кумбса, средний диаметр эритроцитов, осмотическая резистентность эритроцитов.
- 3. А. Снижение Нв в меньшей степени, чем эритроцитов. Высокий цветовой показатель (гиперхромия), Снижение количества лейкоцитов, умеренный лимфоцитоз, Нормобластоз, макроцитоз, мегалоциты, эритроциты с тельцами Жолли.
 - В. В-12- дефицитная анемия.
 - С. Костно-мозговая пункция.
- 4. А. Снижение Нв, сдвиг влево, резкое снижение количества тромбоцитов.
 - В. Тромбоцитопеническая пурпура.
 - С. Костно-мозговая пункция.
- 5. А. Лейкоцитоз с нейтрофилезом, срезким сдвигом влево, токсическая зернистость нейтрофилов, резко ускоренное СОЭ.
 - В. Лейкемоидная реакция миелоидного типа.
 - С. Тромбоциты, костно-мозговая пункция, рентгенография органов грудной клетки, ЛОР, ОАМ, кровь на стерильность, т.е. выявление бактериального процесса в зависимости от клиники.
- 6. А. Лейкоцитоз, высокая эозинофилия, ускоренное СОЭ.
 - В. Лейкемоидная реакция эозинофильного типа.
 - С. Кал я/г, соскоб на энтеробиоз, дуоденальное зондирование, ИФА на глистные инвазии (описторхоз, лямблиоз, токсокароз и др.), IgE, костно-мозговая пункция, дальнейшее обследование в зависимости от клиники (паразитоз, астма, аллергия, опухоли, коллагенозы).
- 7. А. Увеличение количества Нв и эритроцитов, лейкоцитоз с нейтрофилезом со сдвигом влево, тромбоцитоз, высокий гематокрит, СОЭ не оседает.

- В. Полицитемия.
- С. Костно-мозговая пункция.
- 8. А. Снижение Нв и эритроцитов (анемия II степени), лейкопения с высоким лимфоцитозом, тромбоцитопения, ускоренное СОЭ.
 - В. Гипопластическая анемия? Острый лейкоз?
 - С. Костно-мозговая пункция.
- 9. А. Высокий лейкоцитоз с высоким лимфоцитозом.
 - В. Инфекционный лимфоцитоз.
 - С. Костно-мозговая пункция, дальнейшее обследование в зависимости от клиники.

Литература

- 1. Абрамов М.Г. Гематологический атлас. 2-е изд. М.: Медицина, 1985. 344 с.
- 2. Байдун Л.В., Логинов А.В. Значение автоматического анализа крови в клинической практике // Гематология и трансфузиология. 1996. № 2. С. 36-41.
- 3. Гематология детского возраста: Руководство для врачей. / Под ред. Н.А.Алексеева. – СПб.: Гиппократ, 1998. – 544 с.
- 4. Гематологические болезни у детей. / Под ред. проф. М.П.Павловой. Минск, 1996. 433 с.
- 5. Кисляк Н.С., Ленская Р.В. Клетки крови у детей в норме и патологии. М.: Медицина, 1985. 816 с.
- 6. Кузнецова Ю.В., Ковригина Е.С., Токарев Ю.Н. Оценка эритроцитарных параметров автоматического анализа крови и их применение для диагностики анемий // Гематология и трансфузиология. 1996. № 5. С. 44-47.
- 7. Папаян А.В., Жукова Л.Ю. Анемии у детей. СПб., 2001. 384 с.
- 8. Руководство по гематологии / Под ред. А.И.Воробьева. 2-е изд. М.: Медицина, 1985. 816 с.
- 9. Тур А.Ф., Шабалов Н.П. Кровь здоровых детей разных возрастов. Л.: Медицина, 1970. 20 с.

З.А. Маевская, Р.Н. Лучинина, И.Э. Гербек

КЛИНИЧЕСКАЯ ОЦЕНКА ПОКАЗАТЕЛЕЙ ПЕРИФЕРИЧЕСКОЙ КРОВИ У ДЕТЕЙ

Методическое пособие

Оригинал-макет подготовлен в редакционно-издательском отделе НМБ СГМУ Корректор Зеленская И.А.

Отпечатано в лаборатории оперативной полиграфии СГМУ Заказ №.. Тираж...экз.