Морфофункциональное состояние культуры стволовых клеток на 2D-матриксе, имитирующем «молчащие» остеогенные и кроветворные микротерритории

Хлусов И.А.^{1, 2}, Хлусова М.Ю.¹, Шевцова Н.М.¹, Дворниченко М.В.², Нечаев К.А.², Зайцев К.В.³, Клепикова Ю.В.¹, Пичугин В.Ф.², Сурменев Р.А.², Сурменева М.А.²

Morphofunctional status of stem cells culture on 2D matrix imitating «quiescent» osteogenic and hemopoietic microterritories

Khlusov I.A., Khlusova M.Yu., Shevtsova N.M., Dvornichenko M.V., Nechaev K.A., Zaitsev K.V., Klepikova Yu.V., Pichugin V.F., Surmenev R.A., Surmeneva M.A.

¹ Сибирский государственный медицинский университет, г. Томск

² НОЦ «Биосовместимые материалы и биоинженерия» при Томском политехническом университете,

Сибирском государственном медицинском университете и Институте физики прочности

и материаловедения СО РАН, г. Томск

³ Томский НИИ курортологии и физиотерапии ФМБА России, г. Томск

© Хлусов И.А., Хлусова М.Ю., Шевцова Н.М. и др.

Изучено влияние особенностей рельефа и количественных параметров модельного костного минерального матрикса на морфофункциональное состояние пренатальных стромальных клеток легкого человека (ПСКЛЧ) *in vitro* и ремоделирование системы кость — костный мозг мышей *in vivo*. Исследования показали, что магнетронные кальцийфосфатные CaP покрытия представляют собой тонкий (толщина не более 1-2 мкм) беспористый гладкий (Ra меньше 1 мкм) слой карбоксилированных апатитов с соотношением кальция и фосфора выше стехиометрического (более 1,67). Такие 2D-поверхности несут дискретные структурно-функциональные микротерритории (ниши) для ПСКЛЧ. Тем не менее созревание ПСКЛЧ в остеобласты при 4-суточном культивировании на подобных поверхностях является маловероятным. Слабое остеогенное коммитирование ПСКЛЧ на гладком (Ra меньше 1 мкм) CaP покрытии ассоциировано *in vitro* со средним индексом искусственной остеогенной ниши менее 34%, незначительным растворением искусственной поверхности, повышенной секрецией TNF- α в культуре клеток. Поведение подобных имплантатов, несущих столбик сингенного костного мозга, проявляется *in vivo* затуханием эктопического костеобразования и гемопоэза у мышей. Предложенная методология позволяет, по-видимому, имитировать участки поверхности кости, несущие «молчащие» эндостальные ниши для стромальных и кроветворных стволовых клеток.

Ключевые слова: имплантаты, кальций-фосфатные покрытия, ниша, краткосрочная культура клеток человека, щелочная и кислая фосфатазы, гетеротопический тест, мыши.

An influence relief features and quantitative parameters of model bone mineral matrix on *in vitro* morphofunctional status of human prenatal stromal lung cells (HPSLC) and *in vivo* mice bone/marrow system remodeling has been studied. Investigations have showed that magnetron calcium phosphate (CaP) coatings are thin (thickness less than $1-2 \mu m$), nonporous, smooth (Ra < 1 μm) layer of carboxylated apatites with the calcium/phosphorus ratio higher than stoichiometric one (more than 1.67). Such 2D surfaces have discreet structure-functional microterritories (niches) for HPSLC. Nevertheless, HPSLC maturation in osteoblasts under 4-days cultivation on such surfaces is unlikely. Poor HPSLC osteogenic committing on «smooth» (Ra < 1 μm) CaP coating is *in vitro* associated with an average index of artificial osteogenic niche less than 34%, weak artificial surface dissolution and elevated TNF α secretion by cell culture. A behavior of such implants with singenic bone marrow column is displayed *in vivo* by a degeneration of mice heterotopic osteogenesis and hemopoiesis. Methodology suggested allows apparently to imitate bone surface microterritories having "quiescent" endosteal niches for stromal and hemopoietic stem cells.

Key words: implants, calcium phosphate coatings, niche, short-term human cell culture, alkaline and acid phosphatases, heterotopic test, mice.

УДК 612.119.08:611.018.5:57.015.6

Введение

Изучение ниш для стволовых клеток, начиная с работы R. Schofield, опубликованной в 1978 г. [34], является одним из интригующих вопросов клеточной и молекулярной биологии. В 1964 г. А.S. Curtis и М. Varde [13] предположили важнейшую роль топографии и

Бюллетень сибирской медицины, № 6, 2012

геометрии поверхности в детерминации клеточного поведения. По мнению N.J. Sniadecki и соавт. [35], в настоящее время наука находится только в начале понимания их эффекта. При этом отмечается существенное значение структурно-функциональной организации микроокружения для воспроизведения физиологических условий для стволовых клеток *ex vivo* [16, 39].

Встречаются упоминания о возможной иерархии ниш как специализированных участков микроокружения стволовых клеток для самоподдержания и дифференцировки кроветворных клеток [16], для «молчащих» и активно пролиферирующих стволовых кроветворных клеток (СКК) [9]. Анализируется клеточный состав ниш, прежде всего мультипотентные мезенхимальные стромальные клетки (ММСК) и остеобласты [15, 39].

Вероятным механизмом контроля константы плюрипотентных и коммитированных СКК рассматривается размер кроветворных ниш [40], эластичность и жесткость внеклеточного матрикса [18]. При этом остеобласты контактируют, с одной стороны, с кроветворными элементами, с другой стороны, с поверхностью кости, одним из основных неорганических компонентов которой является гидроксилапатит (ГАП) и другие фосфаты кальция. Однако свойства кости как специализированного представителя экстрацеллюлярного вещества практически выпали из поля зрения исследователей.

Так, например, выделяют три структурных компонента эндостальной ниши для СКК: мезенхимальные клетки, внеклеточный матрикс и минеральную часть кости. Однако вклад минерального вещества кости в функционирование кроветворной ниши оценивают только по концентрации внеклеточного кальция [33].

Недавно авторами получены первоначальные экспериментальные данные о существовании остеогенных ниш для стромальных стволовых клеток, их тесной связи с количественными параметрами рельефа минерального вещества кости [5].

В связи с этим изучение морфофункционального состояния стромальных стволовых клеток *in vitro* и системы кость — костный мозг *in vivo* в условиях моделирования особенностей рельефа и параметров минерального матрикса кости представляло несомненный интерес.

Материал и методы

Экспериментальные и клинические исследования

В качестве источника модельного минерального матрикса кости применяли диски из титана ВТ1.0 (диаметр 12 мм, толщина 1 мм), несущие двусторонние гладкие кальцийфосфатные СаР покрытия.

Гладкие поверхности (Ra меньше 1 мкм) формировали посредством высокочастотного магнетронного распыления CaP электрода-мишени [31], спрессованного из нанопорошка (диаметр частиц 10—40 нм) стехиометрического ГАП и кремнийзамещенного ГАП (Si-ГАП) с содержанием кремния 4,9 масс% (формула Ca₁₀(PO₄)_{4,28}(SiO₄)_{1,72}(OH)_{0,28}). Нанопорошки получали механохимическим способом [6]. В отличие от исходного порошка материал мишени представлял собой двухфазную CaP керамику на основе стабилизированного кремнием кристаллического ГАП и трикальций-фосфата.

Морфологию и элементный состав полученных покрытий исследовали на сканирующем электронном микроскопе (СЭМ) Quanta 200 ESEM FEG фирмы FEI со встроенной приставкой энергодисперсионного рентгеновского анализа (EDX). Фазовый состав Si-CaP и не содержащего кремния CaP покрытий определяли рентгенофазовым анализом (дифрактометр Shimadzu XRD-7000).

Шероховатость поверхности искусственных СаРпокрытий оценивали по значениям параметров вертикальных неровностей профиля с помощью измерительной системы Talysurf 5-120 (разрешающая способность 10 нм). Определяли Ra (мкм) как средний результат шероховатости в пределах нескольких длин участков измерений согласно ГОСТ 2789-73.

Стерильные экстракты изделий с покрытиями получали согласно требованиям ISO 10993-5 в условиях их 7-суточного растворения при температуре 37 °С в 4 мл изотонического раствора хлорида натрия. Для воспроизведения условий остеосинтеза в клинической ситуации (ацидоз, назначение антибиотиков) в раствор добавляли 30 мг/л антибиотика гентамицина.

In vitro сокультивирование с тестируемыми дисками культуры пренатальных стромальных клеток легкого человека (ПСКЛЧ) в течение 4 или 8 сут проводили в 24-луночных планшетах (Costar) при конечной концентрации клеток $3 \cdot 10^4$ жизнеспособных кариоцитов в 1 мл остеогенной среды. Состав среды, методы оценки цитохимии и морфологии культивируемых клеток, активности щелочной (ЩФ) и кислой фосфатаз (КФ), концентрации остеокальцина (ОК) в супернатантах, оптиче-

скую и растровую электронную микроскопию (РЭМ) образцов применяли согласно ранее описанным протоколам [5]. РЭМ проводили в Томском материаловедческом центре коллективного пользования при НИ ТГУ.

Концентрацию свободного кальция и неорганического фосфора в межклеточной среде измеряли колориметрическим стандартным методом [3] на автоматическом биохимическом анализаторе Hitachi-911. Коллаген выявляли с помощью окраски пикрофуксином по ван Гизону.

ТNFα, IL-2, IL-4 в супернатантах клеточных культур оценивали с помощью наборов для иммуноферментного анализа производства «Протеиновый контур» (г. Санкт-Петербург) согласно инструкциям производителя. Интенсивность окраски оценивали на фотометре Multiscan EX (США) при длине волны 450 нм. Абсолютную концентрацию цитокинов рассчитывали по калибровочной кривой.

В экспериментах *in vivo* по гетеротопическому (эктопическому) костеобразованию использовались 40 мышей-самцов линии BALB/с из коллекционного фонда НИИ фармакологии СО РАМН (г. Томск).

Под эфирным наркозом 20 мышам подкожно вводили по два имплантата (по одному с каждой стороны от средней линии живота) с нанесенным в асептических условиях *in vitro* столбиком сингенного костного мозга (средняя площадь мозга 7,5 мм²), взятого из бедренной кости. Для адгезии клеток органную культуру костного мозга на подложке культивировали при 37 °C в течение 45 мин в культуральной среде, содержащей 95% среды DMEM/F12 (GIBKO, Великобритания) и 5% сыворотки крови эмбрионов коров (Sigma-Aldrich, США).

Через 45 сут животных умерщвляли эфирным наркозом, имплантаты извлекали, снимали тканевые пластинки с поверхности дисков, декальцинировали, заливали парафином и выполняли тонкие (10 мкм) срезы перпендикулярно поверхности имплантатов, окрашивали гематоксилином и эозином для гистологических исследований. Определяли площадь кости и костного мозга согласно компьютерной морфометрии, как описано ранее [25].

При оценке полученных данных были использованы методы статистического описания, а также методы проверки статистических гипотез, использующиеся в стандартных пакетах программ Statistica 6.0. Полученные результаты выражали как среднее арифметическое X, 25%-й (Q₁) и 75%-й (Q₃) квартили, статистическую девиацию SD и ошибку среднего m. Для анализа имеющихся выборок данных использовали гипотезу нормальности распределения (критерий Колмогорова—Смирнова). В основном в выборках наблюдалось распределение показателей, отличное от нормального.

В связи с этим для оценки статистической значимости различий выборок применяли непараметрический критерий Манна—Уитни (*U*-тест). С целью выявления связи между исследуемыми показателями проводили корреляционный анализ по Спирмену. Различия считались статистически значимыми при уровне значимости p < 0.05.

Результаты и обсуждение

Особенности внеклеточного матрикса способны регулировать направление дифференцировки ММСК, отмечена тесная регуляторная взаимосвязь ММСК и остеобластов [26].

В свою очередь, ММСК представляют собой разнородный многоклеточный пул [8]. Остеобласты различаются по функциональной способности [30] и топографическому расположению (трабекулярные и кортикальные). Кортикальная костная ткань более тонкая, плотная, кальцифицированная [32], скорость ее ремоделирования существенно ниже таковой для трабекулярной зоны [30]. При этом в любом своем состоянии поверхность кости является природной подложкой для стромальных и кроветворных клеток.

Проведенные исследования показали, что гладкие (Ra менее 1 мкм) магнетронные CaP покрытия в определенной степени имитируют состояние минерального матрикса кости в спокойном состоянии, вне зоны ремоделирования.

Согласно результатам ранних экспериментов, ПСКЛЧ, взаимодействующие с СаР искусственными поверхностями, быстрее меняют морфофункциональные характеристики (форму клетки, секреторную активность) в сравнении с культурой клеток на пластике [5]. В текущих исследованиях *in vitro* в случае кратковременного контакта ПСКЛЧ с гладкими СаР покрытиями они также характеризовались разнообразной формой. В 85—95% случаев клетки оставались округлыми или овальными и располагались на субмикроскопических неровностях рельефа (рис. 1,*a*; табл. 1, 2). С другой стороны, ПСКЛЧ приобретали фибробластоподобную морфологию (рис. 1,*б*), если находили под-

Экспериментальные и клинические исследования

ходящие особенности поверхностной микроархитектоники. В немногочисленных углублениях искусственной поверхности клетки распластывались (рис. 1,*в*)

а

в

и становилось возможным определить площадь занимаемых ими микротерриторий (ниш) (табл. 3).

Рис. 1. Растровая электронная микроскопия стромальных клеток на магнетронном кальций-фосфатном покрытии: *a* — клетки овальной формы (ув. 5 000); *δ* — клетки фибробластоподобной формы (ув. 2 500); *в* — клетки уплощенной формы (ув. 2 500)

Таблица 1

Результаты компьютерной морфометрии пренатальных стромальных клеток легкого человека, окрашенных на кислую фосфатазу, после 4 сут культивирования на кальций-фосфатных покрытиях (X (Q1-Q3))

	Средний Ra,	Доля окрашенных клеток	D	Sorpacieu	Форма клеток, %	
Группа покрытий	мкм, n = 10	от числа засеянных клеток на 1 мм ² поверхности, %	усл. ед. о. п.	клетки, мкм ²	Правильная форма	Неправильная форма
Гладкие покрытия, n ₁ = 12	0,75	9,86 (6,75—10,13)	$24,08(3,56-13,25)n_2=35$	209,89 (78—216,5) $n_2 = 35$	85,71	14,29
Гладкие структурированные покрытия, $n_1 = 10$	1,05	39,04* (23,64—40,52) <0,011	13,63 (10,23—17,30) $n_2 = 104$	148,78 (73,37—160,5) $n_2 = 104$	95,19	4,81

Примечание. Здесь и в табл. 2—3: *п* — число определений шероховатости искусственных поверхностей; *n*₁ — число подсчитанных оптических снимков (полей зрения); *n*₂ — число подсчитанных клеток в полях зрения; усл. ед. о. п. — условные единицы оптической плотности; здесь и в табл. 2 * — статистически значимые различия с группой гладких покрытий согласно *U*-критерию Манна—Уитни.

Таблица 2

Результаты компьютерной морфометрии пренатальных стромальных клеток легкого человека, окрашенных на коллаген, после 4 сут культивирования на кальций-фосфатных покрытиях (*X* (*Q*₁—*Q*₃))

Γ	Средний Ra, мкм,	Доля коллагенпозитивных клеток от числа	Форма клеток, %	
т руппа покрытии	<i>n</i> = 10	= 10 засеянных клеток на 1 мм ² поверхности, %		Неправильная
Гладкие покрытия,	0,46	24,85 (16,88—30,39)	91,36	8,64

Бюллетень сибирской медицины, ¹6, 2012

Хлусов И.А., Хлусова М.Ю., Шевцова Н.М. и др.Морфофункциональное состояние культуры стволовых клеток на 2D матриксе

$n_1 = 10$		$n_2 = 83$		
Гладкие структурирован-	0,75	9,22* (6,75—10,13)	96,67	3,33
ные покрытия,		$n_2 = 30$		
$n_1 = 10$		<0,0002		

Таблица З

Результаты компьютерной морфометрии пренатальных стромальных клеток легкого человека, окрашенных на щелочную фосфатазу, после 4 сут культивирования на кальций-фосфатных покрытиях (X ± SD (m))

Группа покрытий	Доля окрашенных клеток от числа засеянных клеток на 1 мм ² поверхности, %	<i>D</i> , усл. ед. о. п.	<i>S</i> окраски клетки, мкм ²	<i>S</i> территории, зани- маемой клеткой, мкм ²	S окраски клетки/ S территории, %
Контроль роста клеток на пла-	—	$5,\!19\pm1,\!57$	$145,11 \pm 5,18$	—	—
стике ($n_2 = 12$)		(0,45)	(1,49)		
Гладкие покрытия, средний	12	$-4,36 \pm 18,17$	$111,\!47 \pm 218,\!65$	$461,\!58 \pm 744,\!60$	$23,\!61 \pm 30,\!08$
Ra = 0,94 мкм (n = 10, n ₂ = 12)	$n_1 = 20$	(4,06)	(48,89)	(166,50)	(6,73)
Гладкие структурированные	10	$-0,78 \pm 14,34$	$283,26 \pm 336,91$	822 ± 1180	$34,\!46\pm30,\!82$
покрытия, средний	$n_1 = 13$	(4,14)	(97,26)	(340,82)	(8,90)
$Ra = 0.87$ мкм ($n = 10, n_2 = 13$)					

Оказалось, что именно эти клетки, располагающиеся в ямках (в нашей трактовке нишах [5]), занимают значительную площадь поверхности и окрашиваются на ЩФ. Однако оптическая плотность окрашенных клеток была минимальной (табл. 3). Слабая цитохимическая активность ЩФ, маркера созревания и остеогенной дифференцировки стромальных стволовых клеток [19, 22, 30], проявлялась в дискретных областях контакта клеток с гладким СаР матриксом, имитирующим поверхность интактной (вне фазы ремоделирования) кости.

Известно, что специфической функцией остеобластов является синтез компонентов костного вещества. Тем не менее, согласно собственным данным, активность ЩФ и концентрация ОК (маркеры метаболически активных остеобластов [8, 30]) в супернатантах культуры клеток, контактирующей с прототипом гладкой кости, не отличались от таковых для клеток на пластике (табл. 4).

Более того, в динамике наблюдения остеогенная активность ПСКЛЧ в присутствие гладкой CaP поверхности даже снижалась по сравнению с контролем (рост клеток на пластике, табл. 5). Таким образом, полученные данные свидетельствуют о том, что созревание ПСКЛЧ в остеобласты, формирующие минерализованный костный матрикс, при краткосрочном культивировании на гладких поверхностях является маловероятным событием.

С другой стороны, на гладких СаР поверхностях количество клеток, окрашенных на КФ, не отличалось от доли ЩФ-позитивных элементов (в пределах 10-12%). Однако КФ-положительные ПСКЛЧ имели высокую оптическую плотность, существенную площадь окраски (в среднем 15 × 15 мкм) и правильную форму (табл. 1). Концентрация фосфатных ионов в межклеточной жидкости 4-суточной культуры клеток, контактирующей с прототипом пластинчатой кости, уменьшалась по сравнению с культурой на пластиковой поверхности на фоне 83%-го роста активности КФ (табл. 4). По-видимому, магнетронные покрытия могут служить инициаторами секреции в межклеточную среду активного фермента, участвующего в фосфорном обмене между СаР покрытием и межклеточной средой.

Таблица 4

Минеральный и биохимический состав супернатантов 4-суточной культуры пренатальных стромальных клеток легкого человека (контроль роста) в присутствии молельных имплантатов с кальний-фосфатной поверхностью (X + SD (m))

Исследуемая группа	Средний Ra, мкм, <i>n</i> = 10	Кальций, ммоль	Фосфат-ионы, ммоль	Активность ЩФ, ЕД/л	Активность КФ, ЕД/л	Остеокальцин, нг/мл	
Культуральная среда	—	1,51	9,19	44,15	0,02	0,43	
Контроль роста клеток на пластике, $n_1 = 5$	—	$\begin{array}{c} 1,53 \pm 0,06 \\ (0,03) \end{array}$	$8,71 \pm 0,17$ (0,08)	$46,64 \pm 1,16 \\ (0,52)$	$0,04 \pm 0,02$ (0,009)	$0,74 \pm 0,14$ (0,08)	
Гладкие покрытия,	0,94	$1,\!44\pm0,\!17$	$8,06 \pm 0,46^{\#}(0,27)$	47,03 ± 5,10 (2,94)	$0,\!073\pm0,\!012^{\#}(0,\!007)$	$0,\!80\pm0,\!22$	

Бюллетень сибирской медицины, ¹ 6, 2012

Экспериментальные и клинические исследования

$n_1 = 6$		(0,10)	<i>p</i> = 0,046		<i>p</i> < 0,041	(0,13)
Гладкие структурирован- ные покрытия, $n_1 = 5$	1,14	$\begin{array}{c} 1,61 \pm 0,08 \\ (0,05) \end{array}$	$8,35 \pm 0,08$ (0,05)	$51,30 \pm 2,09^{\#}(1,21)$ p < 0,006	$0,097 \pm 0,031^{\#}(0,018)$ p < 0,018	$0,77 \pm 0,10$ (0,06)

П р и м е ч а н и е. Здесь и в табл. 5—6: [#] — статистически значимые различия с контролем роста клеток на пластике согласно *U*-критерию Манна—Уитни при p < 0.05; n — число определений шероховатости искусственных поверхностей; n_1 — количество исследованных лунок в планшете.

Таблица 5

Уровни (% от фона культуральной среды) секретируемых факторов в 8-суточной культуре фибробластоподобных клеток (X ± SD (m))

Группа исследования (наименование подложки)	Щелочная фосфатаза	Остеокальцин	Кислая фосфатаза
Клетки на пластике (контроль),	$119,32 \pm 6,89$	$119,49 \pm 7,11$	$104 \pm 4,55$
$n_1 = 3$	(3,95)	(4,17)	(2,60)
Клетки в присутствии дисков с гладким	90,53 ± 4,37 [#]	96,94 ± 12,25 [#]	$113,\!64 \pm 8,\!56$
покрытием, Ra = 1,04 мкм (n = 10),	(2,16)	(6,13)	(4,28)
$n_1 = 4$	p < 0,001	p < 0.04	

Окраска на коллаген по ван Гизону показала позитивную реакцию 25% клеток (см. табл. 2), прилипающих к гладким СаР покрытиям. Согласно литературным данным [2], речь может идти о начальных этапах отложения коллагена на поверхности клеток, выступающих в качестве исходной матрицы для построения межклеточного вещества соединительной ткани и ее производных.

Представленные факты позволяют заключить, что при колонизации гладких CaP покрытий, имитирующих состояние минерального матрикса кости в спокойном состоянии (вне зоны ремоделирования), ПСКЛЧ медленно дифференцируются и созревают, по-видимому, в сторону коллагенсинтезирующих фибробластоподобных клеток. Считается, что эндостальные ниши, формируемые «выстилающими» (неактивными) стромальными клетками, предназначены для поддержания длительно репопулирующих СКК преимущественно в покоящемся состоянии [20, 37]. При этом A. Wilson и A. Trumpp считают, что именно взаимодействие костномозговых ММСК и СКК способствует поддержанию последних вне клеточного цикла как *in vitro*, так и *in vivo* [39].

Знания, полученные по клеточной биологии *in* vitro, требуют их обязательной валидации *in vivo* [29], в том числе при помощи теста эктопического (гетеротопического) остеогенеза. Гетеротопическая метаплазия костного мозга протекает через активацию пула донорских ММСК, дифференцирующихся в предшественники и потомки хондроостеобластогенеза [4]. В свою очередь, эндохондральная оссификация является важнейшим условием для развития кроветворного микроокружения, костномозговых лакун и ниш для СКК реципиента [12].

Ранее была выявлена прямая корреляционная зависимость (r = 0.77; p < 0.05) образования кости в тесте эктопического остеогенеза от величины отношения Са и Р в кальцийфосфатном покрытии на имплантате [25]. В то же время результаты данного исследования показали, что при отношении Са и Р выше стехиометрического, но малой шероховатости магнетронные покрытия в принципе не обладают способностью индуцировать эктопическое развитие системы кость — костный мозг мышей. Вероятность формирования тканевой пластинки, роста кости и образования очагов гемопоэза на гладких СаР покрытиях равна нулю (10 из 10 имплантаций не дали положительного результата теста), несмотря на их высокую биосовместимость. Таким образом, 2D-кальцийфосфатные покрытия, имитирующие состояние поверхности гладкого, слабо обновляющегося минерального матрикса, не способствуют развитию функционально активных остеогенных и кроветворных клеток.

По данным зарубежных авторов, в зависимости от физико-химических свойств (степень кристалличности и пористости, растворимость, шероховатость поверхности, элементный и фазовый состав и т.д.) различные образцы СаР материалов обладают разной способностью поддерживать костеобразование. Растворение искусственного СаР матрикса является важным компонентом усиления его остеогенных свойств [14]. Это связано, в первую очередь, с увеличением концентрации внеклеточного кальция, играющего важную роль в регуляции пула стромальных и кроветворных стволовых клеток [40].

В связи с этим следовало проверить, как влияет растворимость модельного минерального матрикса на его костеобразующую активность. Одним из биодеградируемых материалов для биомедицинского приложения считается кремнийсодержащий гидроксиапатит (Si-ГАП), ускоряющий деградацию и остеоинтеграцию материалов [21].

Результаты исследований показали, что введение силикат-ионов в состав гладкого магнетронного CaP покрытия в 2,5 раза (Pu < 0,001) повышало *in vitro* выход кальция в электролит при одинаковом диапазоне шероховатости Si-ГАП- и ГАП-покрытий Ra в пределах 1 мкм. При этом с 0 до 50% (три из шести имплантатов способствовали эктопическому остеогенезу) на Si-ГАП-покрытиях увеличивалось формирование тканевых пластинок, гистологический состав которых соответствовал грубоволокнистой костной ткани с лакунами, заполненными красным костным мозгом (рис. 2).

Рис. 2. Поперечный срез тканевой пластинки, выросшей на текстурированных имплантатах с магнетронным кальций-фосфатным покрытием в гетеротопическом тесте у мышей: 1 — грубоволокнистая костная ткань; 2 — костный мозг. Окраска гематоксилином и эозином. Ув. 200

Естественно, что контроль судьбы стволовых клеток со стороны микроокружения помимо топографии поверхности [35] и ионов кальция [40] включает в себя разнообразные компоненты экстрацеллюлярного матрикса (продукты жизнедеятельности клеток, ионы, цитокины, интегрины, фибриллярные белки и т.д.) [29]. Тем не менее между 2D- и 3D-культурами клеток, а также их поведением *in vivo* обнаружены существенные различия [11]. Для регуляции жизнедеятельности и судьбы стволовых клеток важны структура межклеточного матрикса, его трехмерность [23].

В связи с этим перед формированием гладкого CaP магнетронного покрытия было выполнено макротекстурирование поверхности посредством формирования параллельных борозд глубиной и шириной до 1 мм при сохранении индекса шероховатости покрытия Ra меньше 1 мкм.

Через 45 сут вероятность образования системы кость — костный мозг на 3D-поверхности имплантатов на текстурированных CaP покрытиях возрастала до 83% (пять из шести имплантатов способствовали эктопическому остеогенезу). Это соответствует значениям, ранее полученным для шероховатых (Ra больше 2 мкм) CaP поверхностей [25]. В свою очередь, аналогичное структурирование Si-ГАП магнетронных покрытий позволило получить максимальные (100%) результаты гетеротопического теста (четыре из четырех имплантатов индуцировали костеобразованию и гемопоэзу).

В системе *in vitro* макроструктурированная CaP магнетронная поверхность усиливает цитохимическую и секреторную активность культуры ПСКЛЧ преимущественно в сторону ACP-позитивных клеток (см. табл. 1—4).

Так, макротекстурирование способствовало значительному увеличению (с 9,86 до 39,04%, Pu < 0,08; n = 19) доли сравнительно небольших (средняя площадь окраски 150 мкм) клеток, позитивных на КФ. Одновременно в межклеточной жидкости повышалась активность КФ (на 143%; Pu < 0,018) и в меньшей степени ЩФ (на 10%; Pu < 0,006) по сравнению с соответствующими показателями в контроле роста клеток на пластике. Другими словами, культура ПСКЛЧ на макротекстурированных имплантатах в сравнении с аналогами, несущими гладкое СаР покрытие, более активно ремоделировала (через кислую фосфатазу) их поверхности, постепенно приобретая остеогенные потенции.

Из литературы известно, что остеокласты и их предшественники (прежде всего моноциты-макрофаги) играют многогранную роль в ремоделировании гемопоэтического микроокружения. Они как клеточные компоненты кроветворной ниши [20, 32] спо-

Бюллетень сибирской медицины, ¹ 6, 2012

Экспериментальные и клинические исследования

собствуют мобилизации гемопоэтических прекурсоров в циркулирующую кровь [27]. В условиях дефицита остеокластов нарушается формирование лакун в очагах экстрамедуллярного гемопоэза, что препятствует образованию активных кроветворных микротерриторий резидентной костномозговой стромой и мигрирующими СКК [36]. Согласно общим принципам построения гемопоэтического микроокружения [38] эндостальная ниша регулирует СКК посредством клеточных контактов и гуморальных сигналов [23]. В свою очередь, А.W. Duncan и соавт. [17] считают, что следует различать два аспекта самоподдержания пула СКК: пролиферацию клеток и ограничение их дифференцировки.

Цитокиновый профиль (пг/мл) супернатантов в 1-суточной культуре пренатальных стромальных клеток легкого человека (контроль роста)

в присутствии модельных имплантатов с гладкой ка	альций-фосфатной поверхностью (X ± SD(m))
--	---

Исследуемая группа, $n_1 = 3$	Средний Ra, мкм, n = 10	ΤΝFα	IL-2	IL-4
Клетки на пластике (контроль)	_	$46,52 \pm 1,16 \\ (0,67)$	$78,01 \pm 0,77 \\ (0,44)$	66,33 ± 2,21 (1,28)
Клетки в присутствии дисков с гладким покрытием	0,17	$62,26 \pm 6,0$ (3,47) [#] p < 0,011	77,32 ± 2,75 (1,59)	65,86 ± 5,76 (3,33)

В собственных исследованиях секреция TNF α при контакте ПСКЛЧ с гладкой моделью костного матрикса возрастала на 34% в сравнении с культурой клеток на пластике (табл. 6). В этом плане TNF α может быть одним из мультифункциональных молекулярных факторов, регулирующих самоподдержание (коммитирование) стромальных стволовых клеток, повышающих по типу аутокринной и паракринной регуляции выживаемость ММСК, но тормозящих их дифференцировку в остеобласты [28].

С другой стороны, цитокин (и его рецепторы) являются молекулярными компонентами остеобластной ниши для СКК [36], ингибируют пролиферацию ранних прекурсоров гемопоэза [1]. Далее TNF α стимулирует остеокласты к ремоделированию кости и имплантатов [10], что неизбежно сопровождается изменением морфофункциональных параметров как остеогенных, так и кроветворных ниш.

Недавно для *in vitro* характеристики искусственной поверхности, несущей остеогенные ниши, нашли структурно-функциональный индекс, выражающий отношение площади окраски клеток (остеобластов) на ЩФ к площади углубления в искусственной поверхности, занимаемой окрашенной клеткой ($S_{III\Phi}/S$ микротерритории (ниши), %) [5]. В текущих исследованиях данный индекс также увеличивался с 23 до 35% на структурированных покрытиях (табл. 3), что сопровождалось увеличением эффективности ремоделирования системы кость — костный мозг в гетеротопическом тесте *in vivo*.

Собственные результаты позволяют полагать, что состояние эндостальной ниши (согласно L.E. Purton, D.T. Scadden [32], «молчащее» или активированное) зависит от структурно-функционального состояния костного матрикса. Клоновая концепция кроветворения [24] отражает, по-видимому, неслучайный, но прогнозируемый выход СКК из «молчащей» ниши вследствие постоянного изменения рельефа кости, который вполне может подвергаться компьютерному моделированию. В этом случае предполагаемая иерархия «молчащих» (активных) стволовых микротерриторий костного мозга согласуется с гипотезой И.Л. Черткова и Н.И. Дризе о локально расположенных «смертных» клонах СКК, поочередно участвующих в поддержании гемопоэза [7].

Заключение

Характеристиками «молчащей» остеогенной (кроветворной) ниши является гладкая поверхность, индекс $S_{III\Phi}$ клетки/S ниши менее 34%, слабое растворение минерального матрикса, локальная секреция TNF α . В то же время остеокласты как клетки, меняющие топографию кости и имплантатов [10], способствуют, по-видимому, переключению морфофункциональных параметров остеогенных и кроветворных ниш из молчащего в активное состояние. Исследование выполнено при поддержке Федеральной целевой программы «Научные и научнопедагогические кадры инновационной России» на 2009— 2013 годы (государственный контракт П861 от 25.05.2010; соглашение № 8036 от 12.07.2012).

Авторы выражают благодарность Е.В. Легостаевой за помощь в проведении растровой электронной микроскопии.

Литература

- Клиническая онкогематология / под ред. М.А. Волковой. М.: Медицина, 2001. 576 с.
- Серов В.В., Шехтер А.Б. Соединительная ткань (функциональная морфология и общая патология). М.: Медицина, 1981. 312 с.
- Тиц Н. Клиническое руководство по лабораторным тестам: пер. с англ. / под ред. В.В. Меньшикова. М.: Юнимед-Пресс, 2003. 943 с.
- Фриденитейн А.Я., Лурия Е.А. Клеточные основы кроветворного микроокружения. М.: Медицина, 1980. 216 с.
- 5. Хлусов И.А., Хлусова М.Ю., Зайцев К.В. и др. Пилотное исследование *in vitro* параметров искусственной ниши для остеогенной дифференцировки пула стромальных стволовых клеток человека // Клеточные технологии в биологии и медицине. 2010. № 4. С. 216—224.
- 6. Чайкина М.В., Хлусов И.А., Карлов А.В., Пайчадзе К.С. Механохимический синтез нестехиометрических и замещенных апатитов с наноразмерными частицами для использования в качестве биосовместимых материалов // Химия в интересах устойчивого развития. 2004. Т. 12. С. 389—399.
- 7. Чертков И.Л., Дризе Н.И. Как обеспечивается поддержание кроветворной системы // Гематология и трансфузиология. 1998. Т. 43, № 4. С. 3—8.
- Aerts F., Wagemaker G. Mesenchymal stem cell engineering and transplantation // Genetic Engineering of Mesenchymal Stem Cells / J.A. Nolta (ed.). Springer, 2006.
- P. 1—44.
- 9. Arai F., Suda T. Quiescent stem cells in the niche (July 11, 2008) // StemBook, ed. The Stem Cell Research Community, StemBook, doi/10.3824/stembook.1.6.1, http://www.stembook.org.
- Biomaterials Science: an introduction to Materials in Medicine / ed. by B.D. Ratner, A.S. Hoffman, F.J. Schoen, J.E. Lemons. 2nd ed. Elsevier Inc., 2004. 851 p.
- 11. Birgersdotter A., Sandberg R., Ernberg I. Gene expression perturbation *in vitro* a growing case for three-dimensional (3D) culture systems // Semin. Cancer Biol. 2005. V. 15. P. 405—412.
- Chan C.K.F., Chen C.C., Luppen C.A. et al. Endochondral ossification is required for hematopoietic stem cell niche formation // Nature. 2009. V. 457. P. 490—494.
- Curtis A.S., Varde M. Control of cell behavior: Topological factors // J. Natl. Cancer Inst. 1964. V. 33. P. 15–26.
- 14. Damien C.J., Ricci J.L., Christel P. et al. Formation of a calcium phosphate-rich layer on absorbable calcium carbonate

bone graft substitutes // Calcif Tissue Int. 1994. V. 55. P. 151—158.

- 15. De Barros A.P.D.N., Takiya C.M., Garzoni L.R. et al. Osteoblasts and bone marrow mesenchemal stromal cells control hematopoietic stem cell migration and proliferation in 3D *in vitro* model // PLoS One. 2010. V. 5. e9093—9111.
- Dellatore S.M., Garsia A.S., Miller W.M. Mimicking stem cell niches to increase stem cell expansion // Curr. Opin. Biotechnol. 2008. V. 19. P. 534—540.
- 17. Duncan A.W., Rattis F.M., DiMascio L.N. et al. A role for Wnt signalling in self-renewal of haematopoietic stem cells // Nat. Immunol. 2005. V. 6. P. 314—322.
- 18. Eshghi S., Schaffer D.V. Engineering microenvironments to control stem cell fate and function / ed. S. Bhatia and J. Polak. The Stem Cell Research Community, 2008. doi/10.3824/stembook.1.5.1, http://www.stembook.org.
- Friedenstein A.J. Osteogenic stem cells in bone marrow // Bone and Mineral Research / eds. J.N.M. Heershe, J.A. Kanis. Amsterdam, The Netherlands: Elsevier Science Publishers, 1990. P. 243—272.
- 20. Frisch B.J., Porter R.L., Calvi L.M. Hematopoietic niche and bone meet // Curr. Opin. Support. Palliat. Care. 2008. V. 2. P. 211—217.
- Gibson I.R., Best S.M., Bonfield W. Chemical Characterization of Silicon-Substituted Hydroxyapatite // J. Bio. Mater. Res. Symp. 1999. V. 44. P. 422–428.
- 22. He Q., Wan C., Li G. Concise review: multipotent mesenchymal stromal cells in blood // Stem cells. 2007. V. 25. P. 69—77.
- 23. Jing D., Fonseca A.-V., Alakel N. et al. Hematopoietic stem cells in co-culture with mesenchemal stromal cells — modeling the niche compartments in vitro // Haematologica. 2010. V. 95. P. 542—550.
- 24. *Kay H.E.M.* How many cell generations? // Lancet. 1965. V. 2. P. 418–419.
- 25. Khlusov I. A., Karlov A. V., Sharkeev Yu. P. et al. Osteogenic Potential of Mesenchymal Stem Cells from Bone Marrow in Situ: Role of Physicochemical Properties of Artificial Surfaces // Bulletin of Experimental Biology and Medicine. 2005. V. 140, № 1. P. 144–152.
- 26. Kolf C.M., Cho E., Tuan R.S. Mesenchemal stromal cells. Biology of adult mesenchymal stem cells: regulation of niche, self-renewal and differentiation // Arthritis Res. Ther. 2007. V. 9. P. 204—219.
- Kollet O., Dar A., Shivtiel S. et al. Osteoclasts degrade endosteal components and promote mobilization of hematopoietic progenitor cells // Nat. Med. 2006. V. 12. P. 657— 664.
- 28. Li W., Yu B., Li M. et al. NEMO-binding domain peptide promotes osteoblast differentiation impaired by tumor necrosis factor alpha // Biochem Biophys Res. Commun. 2010. V. 391. P. 1228—33.
- 29. Lutolf M.P., Gilbert P.M., Blau H.M. Designing materials to direct stem-cell fate // Nature. 2009. V. 462. P. 433— 441.
- 30. Osteoporosis. Etiology, diagnosis, and management: second edition / B.L. Riggs, L.J. Melton III, eds. Philadelphia; N.Y.: Lippincott-Raven Publishers, 1995. 524 p.
- 31. Pichugin V. F., Eshenko E.V., Surmenev R.A. et al. Application of High-Frequency Magnetron Sputtering to Depos-

Бюллетень сибирской медицины, ¹ 6, 2012

it Thin Calcium-Phosphate Biocompatible Coatings on a Titanium Surface // J. of Surface Investigation. X-ray, Synchrotron and Neutron Techniques. 2007. V. 1, № 6. P. 679–682.

- 32. *Purton L.E., Scadden D.T.* The hematopoietic stem cell niche // StemBook / ed. L. Silberstein. The Stem Cell Research Community, 2008. doi/10.3824/stembook.1.28.1, http://www.stembook.org.
- 33. Scadden D.T. The stem cell niche in health and leukemic disease // Best Pract. Res. Clin. Haematol. 2007. V. 20. P. 19—27.
- 34. *Schofield R*. The relationship between the spleen colonyforming cell and the haemopoietic stem cell // Blood Cells. 1978. V. 4. P. 7—25.
- 35. Sniadecki N.J., Desai R.A., Ruiz S.A., Chen C.S. Nanotechnology for cell-substrate interactions // Annals of Biomedial

Экспериментальные и клинические исследования

Engineering. 2006. V. 34. P. 59-74.

- 36. Taichman R.S. Blood and bone: two tissues whose fates are intertwined to create the hematopoietic stem-cell niche // Blood. 2005. V.105. P. 2631—2639.
- 37. Taichman R.S., Reilly M.J., Verma R.S. et al. Hepatocyte growth factor is secreted by osteoblasts and cooperatively permits the survival of haematopoietic progenitors // Br. J. Haematol. 2001. V. 112. P. 428—448.
- 38. Trentin J.J. Determination of bone marrow stem cell differentiation by stromal hemopoietic inductive microenvironments (HIM) // Am. J. Pathol. 1971. V. 65. P. 621—628.
- 39. Wilson A., Trumpp A. Bone-marrow haematopoietic-stemcell niches // Nat. Rev. Immunol. 2006. V. 6. P. 93—106.
- 40. *Yin T., Li L.* The stem cell niches in bone // J. of Clinical Investigation. 2006. V. 116. P. 1195—1201.

Поступила в редакцию 06.09.2012 г. Утверждена к печати 09.10.2012 г.

Сведения об авторах

- *И.А. Хлусов* д-р мед. наук, профессор, научн. руководитель НОЦ «Биосовместимые материалы и биоинженерия», профессор кафедры морфологии и общей патологии СибГМУ (г. Томск).
- *М.Ю. Хлусова* канд. мед. наук, доцент кафедры патофизиологии СибГМУ (г. Томск).
- *Н.М. Шевцова* д-р мед. наук, ст. науч. сотрудник ЦНИЛ СибГМУ (г. Томск).
- *М.В. Дворниченко* канд. мед. наук, докторант кафедры патофизиологии СибГМУ (г. Томск).
- К.А. Нечаев аспирант кафедры фармакологии СибГМУ (г. Томск).
- *К.В. Зайцев* канд. мед. наук, зав. лабораторией изучения механизмов действия физических факторов Томского НИИ курортологии и физиотерапии ФМБА России (г. Томск).
- *Ю.В. Клепикова* студент 6-го курса медико-биологического факультета СибГМУ (г. Томск).
- **В.Ф. Пичугин** д-р физ.-мат. наук, профессор, руководитель НОЦ «Биосовместимые материалы и биоинженерия», зав. кафедрой теоретической и экспериментальной физики НИ ТПУ (г. Томск).
- *Р.А. Сурменев* канд. физ.-мат. наук, доцент кафедры теоретической и экспериментальной физики НИ ТПУ, сотрудник НОЦ «Биосовместимые материалы и биоинженерия» (г. Томск).
- *М.А. Сурменева* инженер кафедры теоретической и экспериментальной физики НИ ТПУ, НОЦ «Биосовместимые материалы и биоинженерия» (г. Томск).

Для корреспонденции

Хлусов Игорь Альбертович, тел./факс 8 (382-2) 42-64-43; e-mail: khlusov63@mail.ru