## Антигенные свойства рекомбинантного аналога белка легумаин трематоды *Opisthorchis felineus*, вызывающей описторхоз у человека

Разумов И.А., Львова М.Н., Пономарева Е.П., Катохин А.В., Петренко В.А., Сазонов А.Э., Огородова Л.М., Новицкий В.В., Сивков А.Ю., Мордвинов В.А.

# Antigenic properties estimation for legumain protein recombinant analogue of trematoda *Opisthorchis felineus*, causing human opisthorchiasis

Razumov I.A., Lvova M.N., Ponomareva Ye.P., Katokhin A.V., Petrenko V.A., Sazonov A.E., Ogorodova L.M., Novitsky V.V., Sivkov A.Yu., Mordvinov V.A.

Институт цитологии и генетики СО РАН, г. Новосибирск Сибирский государственный медицинский университет, г. Томск

© Разумов И.А., Львова М.Н., Пономарева Е.П. и др.

Работа посвящена оценке применимости белка легумаин возбудителя описторхоза *O. felineus* для иммунодиагностики этого заболевания. Рекомбинантный белок (rOF49-leg), клонированный и экспрессированный в *E. coli*, в иммуноферментном анализе (ИФА) продемонстрировал различие в иммунореактивности между инфицированными и здоровыми сыворотками. Эти результаты показывают потенциальную пригодность этого антигена для разработки серодиагностических тестов на описторхоз.

Ключевые слова: Opisthorchis felineus, описторхоз, рекомбинантные белки, легумаин, иммунодиагностика.

We estimated potential of protein legumain from opisthorchiasis agent *O. felineus* for application in immunodiagnosis of this disease. Bacterially expressed recombinant protein (rOF49-leg) showed strong difference in Enzyme-linked immunosorbent assay (ELISA) between infected and negative sera. These results suggest the potential of this antigen for development of serodiagnostic test for human opisthorchiasis.

Key words: Opisthorchis felineus, opisthorchiasis, recombinant proteins, legumain, immunodiagnosis.

УДК 577.322:616-097

## Введение

Печеночный сосальщик Opisthorchis felineus относится к представителям семейства Opisthorchiidae класса Trematoda [8]. Описторхоз, вызываемый O. felineus, является серьезным эндемичным заболеванием, широко распространенным на территории России, особенно в Западной Сибири [1]. Известны также описторхоз, возбудителем которого является другой представитель описторхид — O. viverrini, в Юго-Восточной Азии, и клонорхоз (китайский описторхоз), вызываемый Clonorchis sinensis, в Восточной Азии [15]. Описторхоз характеризуется повреждением гепа-

тобилиарной системы, а также может провоцировать развитие холангиокарциномы [13]. Мировой опыт показывает, что для более успешного и эффективного решения проблем, связанных с описторхозом, необходимо развитие современных методов диагностики, профилактики и лечения этого заболевания. К настоящему времени практически нет данных об иммунном ответе организма-хозяина на отдельные белки-антигены *O. felineus*.

Описаны несколько рекомбинантных белков описторхид *O. viverrini* и *C. sinensis*, полученных в прокариотической системе [4, 5, 9, 10, 12, 16]. Наибольший интерес представляют работы, где авторы, используя

протеомные данные и результаты скрининга библиотек кДНК, выявили гены возможных белковиммуногенов *O. viverrini* и *C. sinensis* и провели конструирование и клонирование плазмид, несущих эти гены. Далее были получены рекомбинантные аналоги этих белков, и методами иммуноблотта и ИФА было проведено тестирование взаимодействия позитивных сывороток от пациентов больных описторхозом с этими рекомбинантными белками. Полученные результаты указывают на возможность использования данных рекомбинантных аналогов белков этих трематод в иммунодиагностике [10, 12, 16].

Легумаин (аспарагенил эндопептидаза) относится к классу цистеиновых протеаз, который гидролизует пептиды и белки по аспарагину с С-конца белка (база данных MEROPS, clan CD, family C13). Этот белок описан в составе секреторно-экскреторного продукта для многих трематод: O. viverrini, C. sinensis, Schistosoma mansoni, Fasciola hepatica, Fasciola gigantica [6, 9]. Ген легумаин С. sinensis был экспрессирован с использованием системы экспрессии QIAExpress фирмы QIAGEN [7]. При использовании в иммунодиагностике рекомбинантного аналога белка C. sinensis, полученного с помощью прокариотической системы экспрессии, была показана высокая чувствительность и специфичность взаимодействия человеческих сывороток с указанным белком: 71,4 и 100% соответственно [7].

Цель данной работы заключалась в определении возможности использования в иммунодиагностике описторхоза рекомбинантного аналога белка легумаин О. felineus (rOF49-leg). В рамках поставленной цели был получен клон кДНК, содержащий фрагмент транскрипта гена, кодирующего белок легумаин О. felineus, затем приготовлены конструкции для экспрессии клонированного фрагмента, наработан и очищен рекомбинантный белок и проведен анализ его антигенных свойств.

#### Материал и методы

Коммерческие наборы фирм: Bio-Rad (Aurum Total RNA Mini Kit); Fermentas (RevertAid First Strand cDNA Synthesis Kits); Qiagen (QIAquick Gel Extraction Kit; QIAquick PCR Purification Kit; QIAquick Nucleotide Removal Kit; QIAexpress kit type IV; QIAprep Spin Miniprep Kit; Applied Biosystems (Terminator Cycle Se-

quencing Kit v. 3.1); ЗАО «Вектор-Бест (Описторхоз-IgG-ИФА-БЕСТ; Описторхоз-IgG-контрольная панель).

Ферменты и маркеры молекулярных весов: в работе использовали Phusion ДНК-полимеразу (Finnzyme, Finland), Таq ДНК-полимеразу («СибЭнзим», г. Новосибирск), эндонуклеазы рестрикции Ватин, HindIII, EcoRI и Bg/II («СибЭнзим», г. Новосибирск). Во всех реакциях использовали растворы и условия, рекомендованные производителем. Для определения длины фрагментов нуклеиновых кислот использовали λ ДНК/ВssI («СибЭнзим», г. Новосибирск). Для определения молекулярных весов белковых препаратов использовали маркеры молекулярных масс белков фирмы Fermentas (Литва).

Олигонуклеотиды. Последовательности праймеров для клонирования легумаина: FLegOF 5`-cacggatccGTTGGAAGCTGCCGGTGTC-3` и RLegOF 5`-cgcaagcttTTAGGA-ACAGACGTTGTGGACC-3`, внутренние праймеры для секвенирования легумаина: FLegINOF 5-TACGTGGAGGCTTGTTACTCTG-3` и RLegINOF 5`-GCCCAGCTTG-ATTCACCTT-3`. Олигонуклеотиды приготовлены фирмой «Биоссет» (г. Новосибирск).

Создание генно-инженерной конструкции для получения рекомбинантного белка. Для выделения суммарной РНК из O. felineus использовали набор для выделения РНК (Aurum Total RNA Mini Kit), а для получения кДНК был использован набор RevertAid First Strand cDNA Synthesis Kits согласно инструкции компании-изготовителя. Выделение ПЦР-фрагментов, конструирование рекомбинантных ДНК и рестрикционный анализ проводили по стандартным методикам [11]. Секвенирование ПЦР-фрагментов проводили в ЦКП СО РАН «Геномика». Компьютерный анализ нуклеотидных последовательностей проводили в программе Sequence Scaner 1.0.

Экспрессия, выделение и очистка рекомбинантного белка. Для получения рекомбинантного белка легумаин использовали штамм *E. coli* BL21(DE3)pLysS (Stratagene, CША). Этот штамм, трансформированный плазмидной ДНК pMALTEV-legumain, обозначен как *E. coli* BL21(DE3)pLysS-pMALTEV-legumain. После добавления IPTG до конечной концентрации 0,3 ммоль трансформированную культуру выращивали при температуре 30 °C в 500 мл жидкой среды LB с добавлением ампициллина натриевой соли и при перемешивании со скоростью 180 об/мин. После индукции IPTG

и инкубации суспензию центрифугировали при 4 000*g* в течение 20 мин при 4 °C и осадок растворяли в буфере (20 ммоль TrisHCl (рН 7,5), 200 ммоль NaCl, 1 ммоль ЭДТА). Далее суспензию из биомассы подвергали обработке ультразвуком (ультразвуковой дезинтегратор Vibra CellTM-Sonics) на льду (пять раз по 10 с при 300 Вт с 30-секундными паузами между обработками). Смесь центрифугировали при 15 000*g* 20 мин при температуре 40 °C, полученные супернатант и осадок анализировали на наличие целевого белка с помощью денатурирующего полиакриламидного гельэлектрофореза (ДСН-ПААГ-ЭФ).

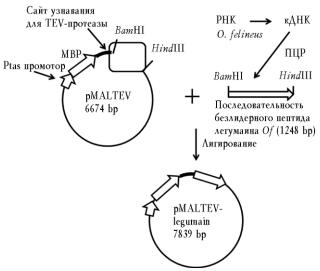
Очистку гибридного белка maltose binding protein (МВР)-legumain проводили с помощью аффинной хроматографии. При прохождении через колонку с амилозой (Amylose resin-New England Biolabs) гибридный белок связывался, затем его элюировали раствором мальтозы с концентрацией 10 ммоль. Очистку проводили по протоколу производителя. Полученные клеточные лизаты штамма-продуцента и очищенные рекомбинантные белки анализировали методом белкового электрофореза по методу [3] в 10—12%-м геле.

Концентрацию белка определяли путем измерения оптической плотности по протоколу Bio-Rad-protein assay на спектрофотометре с использованием калибровочной кривой, построенной для препаратов очищенного бычьего сывороточного альбумина (BSA) (молекулярная масса 55 кДа) с известными концентрациями.

Иммуноблотт и иммуноферментная реакция. Перенос белков после ЭФ проводили по методу Н. Тоwbin и соавт. [14], а проведение или постановку иммуноферментной реакции осуществляли, как описано ранее [2]. ИФА с рекомбинантным белком в качестве антигена проводили, используя компоненты тест-системы фирмы «Вектор-Бест» (Россия), в соответствии с инструкцией производителя. Измерение оптической плотности проводили с помощью планшетного фотометра Multiscan EX (ThermoLabSystems, Финляндия) при длине волны 492 нм.

Результаты представлены на графике в виде среднего арифметического значения оптической плотности. Достоверность различий оценивали с помощью непараметрического критерия Манна—Уитни. Достоверными считались различия при p < 0.05.

Программное обеспечение. Для разработки схемы клонирования целевых генов использовали программный пакет Vector NTI 9 (InforMax, CIIIA). Расчет олиго-


нуклеотидных праймеров для ПЦР и подбор условий реакции выполняли с помощью компьютерной программы OLIGO, расчет температуры отжига праймеров про-

водили с помощью калькулятора на сайте Finnzyme (http://www.finnzymes.fi/tm\_determination.html). При проведении компьютерного анализа нуклеотидных и аминокислотных последовательностей применяяли программы, представленные на сайтах NCBI (http://www.ncbi.nlm.nih.gov/BLAST/ и http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi), EXPASY (www.expasy.org), а также программы SignalP 4.0 Server (http://www.cbs.dtu.dk/services/SignalP/), PSIPRED 3.0 (http://bioinf.cs.ucl.ac.uk/psipred), NetNGlyc 1.0 Server (http://www.cbs.dtu.dk/services/NetNGlyc/).

## Результаты и обсуждение

С помощью коммерческого набора для выделения РНК была выделена суммарная РНК из 20 взрослых особей O. felineus. Образцы РНК использовали для получения кДНК с помощью соответствующего коммерческого набора. Далее кДНК использовали для реакции амплификации, для наработки фрагмента легумаина O. felineus, не содержащего сигнальный пептид. С этой целью были разработаны специфические праймеры, содержащие сайты узнавания эндонуклеазами рестрикции BamHI и HindIII, а также дополнительные нуклеотиды, необходимые для воссоздания правильной рамки трансляции. В ходе амплификации с использованием этих праймеров был получен фрагмент, соответствующий по длине рамке трансляции гена легумаина O. felineus без сигнального пептида, которая составляет 1 245 нуклеотидов. Для получения конструкции рекомбинантной плазмиды, кодирующей белок легумаин O. felineus, этот фрагмент клонировали в экспрессирующий вектор. С этой целью был выбран вектор pMALTEV, чтобы преодолеть свойство нерастворимости, показанное для рекомбинантных белков легумаина С. sinensis и О. viverrini [7, 9]. В этом векторе рекомбинантный легумаин должен экспрессироваться в составе гибридной конструкции с мальтозосвязывающим белком (МВР), повышающим растворимость. Эта конструкция обозначена как legumain-MBP 100 кДа. На рис. 1 представлена схема плазмиды pMALTEV-legumain и способ ее конструирования. Таким образом, в результате была получена рекомбинантная конструкция для прокариотической экспрессии полноразмерного гена легумаин *O. felineus*. Плазмида pMALTEV-legumain содержит открытую рамку считывания, кодирующую полипептид legumain-MBP длиной 797 аминокислотных остатков ( $\approx$ 89,4 кДа), включая 420 аминокислот белка легумаина ( $\approx$ 47,9 кДа).

Для получения рекомбинантного белка легумаина использовали штамм *E. coli* BL21(DE3)pLysS, трансформированный плазмидной ДНК pMALTEV-legumain и обозначенный как *E. coli* BL21(DE3)pLysS-pMALTEV-legumain. Образец биомассы анализировался с помощью белкового электрофореза по Лэммли на наличие экспрессии целевого продукта и его растворимости (рис. 2).



Puc. 1. Схема конструирования плазмиды pMALTEV-legumain: BamHI, HindIII — уникальные сайты узнавания для соответствующих эндонуклеаз рестрикции, в скобках указаны координаты их сайтов

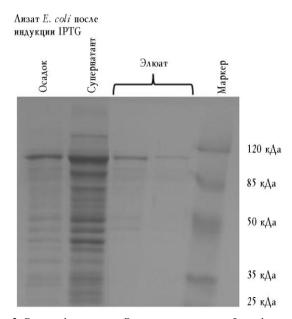



Рис. 2. Электрофореграмма. Экспрессия и очистка белка legumain-MBP, синтезирующегося под контролем рекомбинантной плазмиды pMALTEV-legumain в клетках штамма-продуцента *Escherichia coli* BL21(DE3) pLysS-pMALTEV-legumain

Изопропил-β-D-тиогалактозид (ИПТГ) обеспечивает индукцию синтеза рекомбинантного гибридного белка MBP-legumain с уровнем экспрессии при росте на жидких питательных средах до 40 мг целевого белка на 1 л культуральной жидкости. Цифровая обработка электрофореграмм показала, что чистота белка после аффинной хроматографии достигает 67—88%.

С этой целью выявляли взаимодействие рекомбинантного белка legumain-MBP с набором из двух позитивных сывороток от больных описторхозом и двух негативных сывороток (ЗАО «Вектор-Бест»). Выявление антител в сыворотках крови проводили с помощью твердофазного иммуноферментного анализа (ИФА) с использованием в качестве антигена полипептида legumain-MBP. Образцы сыворотки тестировались трижды. На рис. 3 показаны усредненные значения для позитивных (ПС) и негативных (НС) сывороток, полученные в этом анализе, позволившем получить позитивную оценку для антигенных свойств у рекомбинантного белка. На рис. 3 отмечены звездочкой точки, демонстрирующие достоверные различия между позитивными и негативными сыворотками. Результаты этого первичного анализа показывают, что legumain-MBP способен связываться с антителами позитивных сывороток больных описторхозом и не реагирует с антителами негативных сывороток (ЗАО

«Вектор-Бест»). Дальнейшее исследование рекомбинантного белка с применением большего количества позитивных сывороток позволит более точно оценить его антигенные свойства.

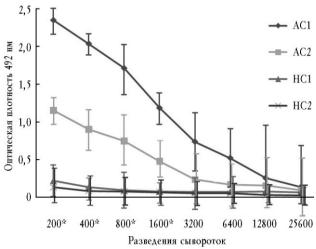



Рис. 3. Результаты тестирования взаимодействия позитивных антисывороток от больных описторхозом и отрицательных или нормальных сывороток с препаратом рекомбинантного белка legumain + MBP в ИФА

Определение специфичности взаимодействия антител позитивной сыворотки больного описторхозом с рекомбинантным легумаином O. felineus осуществляли методом иммуноблотта. Белки, разделенные электрофорезом в полиакриламидном геле, как описано выше [2], переносили на нитроцеллюлозную мембрану (Millipore, США). Появление ярких сине-фиолетовых или коричневых полос (в зависимости от использованного проявляющего раствора) подтверждает, что рекомбинантный легумаин O. felineus ( $\approx$ 47—48 кДа) связывается с антителами позитивной сыворотки от больного описторхозом. С антителами негативной сыворотки реакции не наблюдали (рис. 4).

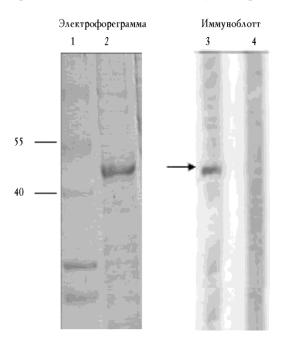



Рис. 4. Выявление методом иммуноблотта белка-мишени в препаратах рекомбинантного белка легумаин для антител референссыворотки от больного описторхозом: 1 — маркеры молекулярного веса (Fermentas); 2 — очищенный рекомбинантный аналог белка легумаин *O. felineus*; 3 — взаимодействие антител позитивной сыворотки от больного описторхозом с очищенным рекомбинантным аналогом белка легумаин *O. felineus* (≈47—48 кДа); 4 — отсутствие реагиро-

вания с антителами негативной сыворотки здорового пациента

#### Заключение

Таким образом, в процессе работы был создан штамм E. coli BL21(DE3)pLysS-pMALTEV-legumain — продуцент рекомбинантного полипептида легумаина, сохранившего антигенные свойства легумаина O. felineus. Этот штамм обеспечивает при культивировании на жидких питательных средах биосинтез указанного полипептида в растворимой форме с уровнем экспрессии не ниже 40 мг рекомбинантного гибридного белка на 1 л культуральной жидкости. Растворимость гибридного белка обеспечивается экспрессией легумаина совместно с мальтозосвязывающим белком (MBP). Благодаря наличию в плазмиде pMALTEVlegumain нуклеотидной последовательности, кодирующей специфический сайт узнавания TEVпротеазы, обеспечивается в дальнейшем отщепление целевого белка легумаина от МВР и получение очищенного рекомбинантного легумаина O. felineus. Этот рекомбинантный аналог, по-видимому, может быть использован для проведения или совершенствования

иммунодиагностики описторхоза, вызываемого печеночным сосальщиком *O. felineus*, а также для получения специфических антител к этому паразиту и генно-инженерных вакцин против описторхоза.

Работа проводилась при финансовой поддержке Министерства образования и науки Российской Федерации, проект № 16.512.11.2129.

#### Литература

- 1. Государственный доклад // Федеральный центр гигиены и эпидемиологии Роспотребнадзора. М., 2009. С. 349—350.
- 2. Котелкин А.Т., Разумов И.А., Локтев В.Б. Получение и характеризация мышиных гибридом, секретирующих моноклональных антитела к основному растворимому антигену Opisthorchis felineus // Мед. паразитология и паразитарные болезни. 1999. Т. 3. С. 6—10.
- 3. Остерман А.А. Методы исследования белков и нуклеиновых кислот. Электрофорез и ультрацентрифугирование. 1981. С. 37—64.
- Eursitthichai V., Viyanant V., Vichasri-Grams S. et al. Molecular Cloning and Characterisation of a Glutathione S-Transferase Encoding Gene From O.viverrini // Asian Pacific Journal of Allergy and Immunology. 2004. V 22. P. 219—228.
- 5. Hong S.-J., Yun Kim T., Gan X.-X. et al. Clonorchis sinensis: glutathione S-transferase as a serodiagnostic antigen for detecting IgG and IgE antibodies. // Experimental parasitology. 08.2002. V. 101. P. 231—234.
- 6. Hu F., Yu X. et al. Clonorchis sinensis: expression, characterization, immunolocalization and serological reactivity of one excretory/secretory antigen-LPAP homologue // Exp.

- Parasitol. 2007. V. 117 (2). P. 157—221.
- 7. Ju J.W., Joo H.N. et al. Identification of a serodiagnostic antigen, legumain, by immunoproteomic analysis of excretory-secretory products of Clonorchis sinensis adult worms // Proteomics. V. 9 (11). P. 3066—3144.
- 8. *King S., Scholz T.* Trematodes of the family Opisthorchiidae: a minireview // The Korean Journal of Parasitology. 2001. V. 39. P. 209—221.
- 9. *Laha T., Sripa J., Sripa B. et al.* Asparaginal endopeptidase from carcinogenetic liver fluke O.viverrini and its potential for serodiagnosis // Int. J. Infect. Dis. 2008. V. 12 (6). P. e49—e59.
- 10. Li S., Shin J.G., Cho P.Y. et al. Multiple recombinant antigens of C.sinensis for serodiagnosis of human clonorchiasis // Parasitol Res. 2011. V. 108. P. 1295—1302.
- 11. Sambrook J., Fritsch E. F., Maniatis T. Molecular cloning: a laboratory manual. 2nd ed. 1989. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
- 12. Shen C., Lee J.A. et al. Serodiagnostic applicability of recombinant antigens of Clonorchis sinensis expressed by wheat germ cell-free protein synthesis system // Diagn. Microbiol. Infect. Dis. 2009. V. 64 (3). P. 334—343.
- Sripa B., Kaewkes S., Sithithaworn P. et al. Liver Fluke Induces Cholangiocarcinoma // PLoS Medicine. 2007. V. 4. P. 1148—1155.
- 14. *Towbin H., Staekelin T., Gordon J.* Electrohyporetic transfer of proteins from polyacrylamide gels tonitrocellulose sheets. Procedure and some applications. // Proc. Natl. Acad. Sci. USA. 1979. V. 76. P. 4350—4354.
- 15. World Health Organization Study Group. Geneva, 2005. P. 243.
- 16. Zhao Q.P., Moon S.U. et al. Evaluation of Clonorchis sinensis recombinant 7-kilodalton antigen for serodiagnosis of clonorchiasis // Clin. Diagn. Lab. Immunol. 2004. V. 11 (4). P. 814—821.

Поступила в редакцию 09.10.2012 г. Утверждена к печати 09.10.2012 г.

#### Сведения об авторах

- **И.А. Разумов** д-р биол. наук, зав. лабораторией молекулярных механизмов патологических процессов Института цитологии и генетики СО РАН (г. Новосибирск).
- **М.Н.** Львова науч. сотрудник лаборатории молекулярных механизмов патологических процессов Института цитологии и генетики СО РАН (г. Новосибирск).
- **Е.П. Пономарева** науч. сотрудник лаборатории молекулярных механизмов патологических процессов Института цитологии и генетики СО РАН (г. Новосибирск).
- **А.В. Катохин** канд. биол. наук, науч. сотрудник лаборатории молекулярных механизмов патологических процессов Института цитологии и генетики СО РАН (г. Новосибирск).
- **В.А. Петренко** науч. сотрудник лаборатории молекулярных механизмов патологических процессов Института цитологии и генетики СО РАН (г. Новосибирск).
- **А.Э. Сазонов** д-р мед. наук, лаборатория молекулярных механизмов патологических процессов Института цитологии и генетики СО РАН (г. Новосибирск).
- **Л.М. Огородова** заслуженный деятель науки РФ, д-р мед. наук, профессор, член-корреспондент РАМН, зав. кафедрой факультетской педиатрии с курсом детских болезней лечебного факультета СибГМУ (г. Томск).

## Разумов И.А., Львова М.Н., Пономарева Е.П. и др.Антигенные свойства рекомбинантного аналога белка легумаин трематоды...

- **В.В. Новицкий** заслуженный. деятель науки РФ, д-р мед. наук, профессор, академик РАМН, зав. кафедрой патофизиологии СибГМУ (г. Томск).
- **А.Ю. Сивков** канд. биол. наук, науч. сотрудник лаборатории молекулярных механизмов патологических процессов Института цитологии и генетики СО РАН (г. Новосибирск).
- **В.А. Мордвинов** д-р биол. наук, науч. сотрудник лаборатории молекулярных механизмов патологических процессов Института цитологии и генетики СО РАН (г. Новосибирск).

#### Для корреспонденции

Сивков Антон Юрьевич, тел. 8 (383) 363-49-01-2205; e-mail: sivkov@bionet.nsc.ru